- •Оглавление
- •Введение
- •1.Проверка на достоверность сигналов с усо
- •2.Структура алгоблока. Организация связи между алгоблоками
- •3.Программная реализация защиты по дискретному каналу
- •3.1.1 Таймер
- •3.1.2Триггер
- •3.1.3Программа защиты от «дребезга»
- •3.2.Программа защиты по дискретному каналу
- •3.3.Первая программа защиты по аналоговому каналу
- •3.3.1Конфигурационная таблица программы 1
- •3.4.Вторая программа защиты по аналоговому каналу
- •3.4.1Конфигурационная таблица программы 2
- •3.5.Оценка величины гистерезиса в нуль-органе
- •3.6.Алгоритм расчёта среднего значения в асутп
- •3.7.Защита от выброса или провала аналогового сигнала
- •3.8.Контрольные вопросы
- •4.Алгоритм простого блока мажоритарного выбора два из трёх
- •4.1.Программа простого блока мажоритарного выбора
- •5. Алгоритм мажоритарного выбора три из пяти
- •5.1.Программа
- •5.2.Конфигурационная таблица
- •6.Программа выбора исправного канала из двух каналов
- •6.1.Конфигурационная таблица
- •6.2.Контрольные вопросы
- •7.Управление по циклограмме
- •8.Алгоритм синтеза циклического управления
- •8.1.Циклограмма 1. Типовая циклограмма
- •8.2.Циклограмма 2. Управление в зависимости от параметра.
- •8.3.Циклограмма 3. Программа с повторяющимися ситуациями
- •8.4.Циклограмма 4. Задание числа циклов с лп контроллера
- •8.5.Циклограмма 5. Пуск циклограммы по команде оператора
- •8.6.Контрольные вопросы
- •9.Синтез дискретных систем управления
- •9.1.Классический алгоритм синтеза дискретного автомата
- •9.1.1Автомат с памятью и с защитой по каналам
- •9.2.Автомат с контролем последовательности ситуаций
- •9.3.Описание программы управления электрозадвижкой
- •9.4.Контрольные вопросы
- •10.Организация связи с верхним уровнем16
- •11.Управление задвижкой по циклограмме
- •12.Практические особенности реализации циклограмм
- •13.Перевод программы c языка fbd в dxf-формат
- •14.Порядок получения конфигурационной таблицы
- •15.Спецификация представленных в пособии программ
- •16.Варианты заданий
- •Литература
- •Приложение а
- •1.Элементарные функции алгебры логики
- •2.Свойства элементарных функций
- •3.Принцип двойственности
- •4. Разложение булевой функции по переменным
- •5. Полнота системы
- •5.1.Полином Жегалкина
- •5.2.Теорема Жегалкина
- •1.Минимизация булевых функций
- •1.1.Минимизация нормальных форм
- •1.2.Алгоритм Квайна построения сокращенной днф
- •1.3.Метод Блейка
- •1.4. Построение сокращенной днф с помощью кнф
- •1.5.Построение всех тупиковых днф.
- •Алгоритм минимизации функций в классе днф
- •Алгоритм минимизации функций в классе кнф
- •Алгоритм минимизации функций в классе нормальных форм
- •1.6.Минимизация частично определенных функций
- •1.7. Минимизация с использованием карт Карно
- •1.8.Код Грея
- •Приложение б Краткая биография Жегалкина и.И.
- •Приложение в Языки программирования промышленных контроллеров
- •Приложение г Имитаторы аналоговых и дискретных сигналов
- •Приложение д25 Программы для овен плк-150 и плк-154
- •Реализация дискретных систем управления на контроллерах
- •400131 Волгоград, пр. Ленина, 28, корп. 1.
- •400131, Г. Волгоград, пр. Ленина, 28, корп. 7.
1.2.Алгоритм Квайна построения сокращенной днф
1. Получить СДНФ функции f.
2. Провести все операции неполного склеивания.
3. Провести все операции поглощения.
Пример 12. Построим сокращенную ДНФ для функции, приведенной в таблице 3.1.
Таблица 3.1
-
x
y
z
t
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
f
1 1 1 1 0 1 0 0 1 0 1 0 1 1 1 1
1. Строим СДНФ функции f:
.
Пронумеруем дизъюнктивные члены в
полученной СДНФ в порядке от 1 до 11.
2. Проводим все операции неполного склеивания. Первый этап склеивания в таблице 3.2.
После первого этапа
склеиваний (и возможных поглощений)
получаем, что
Пронумеруем дизъюнктивные члены в полученной ДНФ в порядке их следования от 1 до 15. Второй этап склеиваний в таблице 3.3.
После второго этапа
склеиваний и последующих поглощений
получаем, что
Это и будет сокращенной ДНФ для функции
f, ибо дальнейшие склеивания
невозможны.
Таблица 3.2
Слагаемые |
Склеивание по |
Результат |
1,2 |
t |
|
1,3 |
Z |
|
1,6 |
X |
|
2,4 |
Z |
|
2,5 |
Y |
|
3,4 |
t |
|
3,7 |
X |
|
5,9 |
X |
|
6,7 |
Z |
|
6,8 |
Y |
|
7,10 |
Y |
|
8,9 |
t |
|
8,10 |
Z |
|
9,11 |
Z |
xyt |
10,11 |
t |
xyz |
Таблица 3.3
-
Слагаемые
Склеивание по
Результат
1, 6
Z
2, 4
t
2, 8
X
3, 7
Z
8, 13
Y
x
10, 11
Z
x
12, 15
Z
xy
13, 14
t
xy
1.3.Метод Блейка
Метод Блейка для построения сокращенной ДНФ из произвольной ДНФ состоит в применении правил обобщенного склеивания и поглощения. Подразумевается, что правила применяются слева направо. На первом этапе производится операция обобщенного склеивания до тех пор, пока это возможно. На втором производится операция поглощения.
Пример 2.
Построить сокращенную ДНФ по ДНФ D
функции f(x,y,z),
где
После первого этапа
получаем:
После второго этапа
получаем сокращенную ДНФ:
