- •Оглавление
- •Введение
- •1.Проверка на достоверность сигналов с усо
- •2.Структура алгоблока. Организация связи между алгоблоками
- •3.Программная реализация защиты по дискретному каналу
- •3.1.1 Таймер
- •3.1.2Триггер
- •3.1.3Программа защиты от «дребезга»
- •3.2.Программа защиты по дискретному каналу
- •3.3.Первая программа защиты по аналоговому каналу
- •3.3.1Конфигурационная таблица программы 1
- •3.4.Вторая программа защиты по аналоговому каналу
- •3.4.1Конфигурационная таблица программы 2
- •3.5.Оценка величины гистерезиса в нуль-органе
- •3.6.Алгоритм расчёта среднего значения в асутп
- •3.7.Защита от выброса или провала аналогового сигнала
- •3.8.Контрольные вопросы
- •4.Алгоритм простого блока мажоритарного выбора два из трёх
- •4.1.Программа простого блока мажоритарного выбора
- •5. Алгоритм мажоритарного выбора три из пяти
- •5.1.Программа
- •5.2.Конфигурационная таблица
- •6.Программа выбора исправного канала из двух каналов
- •6.1.Конфигурационная таблица
- •6.2.Контрольные вопросы
- •7.Управление по циклограмме
- •8.Алгоритм синтеза циклического управления
- •8.1.Циклограмма 1. Типовая циклограмма
- •8.2.Циклограмма 2. Управление в зависимости от параметра.
- •8.3.Циклограмма 3. Программа с повторяющимися ситуациями
- •8.4.Циклограмма 4. Задание числа циклов с лп контроллера
- •8.5.Циклограмма 5. Пуск циклограммы по команде оператора
- •8.6.Контрольные вопросы
- •9.Синтез дискретных систем управления
- •9.1.Классический алгоритм синтеза дискретного автомата
- •9.1.1Автомат с памятью и с защитой по каналам
- •9.2.Автомат с контролем последовательности ситуаций
- •9.3.Описание программы управления электрозадвижкой
- •9.4.Контрольные вопросы
- •10.Организация связи с верхним уровнем16
- •11.Управление задвижкой по циклограмме
- •12.Практические особенности реализации циклограмм
- •13.Перевод программы c языка fbd в dxf-формат
- •14.Порядок получения конфигурационной таблицы
- •15.Спецификация представленных в пособии программ
- •16.Варианты заданий
- •Литература
- •Приложение а
- •1.Элементарные функции алгебры логики
- •2.Свойства элементарных функций
- •3.Принцип двойственности
- •4. Разложение булевой функции по переменным
- •5. Полнота системы
- •5.1.Полином Жегалкина
- •5.2.Теорема Жегалкина
- •1.Минимизация булевых функций
- •1.1.Минимизация нормальных форм
- •1.2.Алгоритм Квайна построения сокращенной днф
- •1.3.Метод Блейка
- •1.4. Построение сокращенной днф с помощью кнф
- •1.5.Построение всех тупиковых днф.
- •Алгоритм минимизации функций в классе днф
- •Алгоритм минимизации функций в классе кнф
- •Алгоритм минимизации функций в классе нормальных форм
- •1.6.Минимизация частично определенных функций
- •1.7. Минимизация с использованием карт Карно
- •1.8.Код Грея
- •Приложение б Краткая биография Жегалкина и.И.
- •Приложение в Языки программирования промышленных контроллеров
- •Приложение г Имитаторы аналоговых и дискретных сигналов
- •Приложение д25 Программы для овен плк-150 и плк-154
- •Реализация дискретных систем управления на контроллерах
- •400131 Волгоград, пр. Ленина, 28, корп. 1.
- •400131, Г. Волгоград, пр. Ленина, 28, корп. 7.
5. Полнота системы
Определение 4. Система функций {f1, f2, ..., fs, ...}P2 называется полной в Р2, если любая функция f(x1, ..., xn) P2 может быть записана в виде формулы через функции этой системы.
Полные системы
1. P2 – полная система.
2. Система
M={x1&x2, x1x2,
}
– полная система, т.к. любая функция
алгебры логики может быть записана в
виде формулы через эти функции.
Пример 8.
Неполные системы: {
},
{0,1}.
Лемма (достаточное условие полноты)
Пусть система U = {f1, f2, ..., fs, ...} полна в Р2. Пусть B = {g1, g2, ..., gk, ...} – некоторая система из Р2, причем любая функция fi U может быть выражена формулой над B, тогда система B полна в Р2.
7. Система {x1&x2, x1x2, 0, 1} полна в Р2, U = {x1&x2, }, = x11.
5.1.Полином Жегалкина
f(x1,
..., xn) P2,
представим ее в виде формулы через
конъюнкцию и сумму по модулю два,
используя числа 0 и 1. Это можно сделать,
так как {x1&x2, x1x2,
0, 1} полна в Р2. В силу свойства
x & (yz)
= xy xz можно
раскрыть все скобки, привести подобные
члены, и получится полином от n
переменных, состоящий из членов вида
х
х
...х
,
соединенных знаком .
Такой полином называется полиномом
Жегалкина.
Общий вид полинома Жегалкина:
где
,
s = 0, 1, ..., n, причем при s = 0
получаем свободный член а0.
Представление функции в виде полинома Жегалкина
1. Представим
любую функцию формулой над {x1&x2,
}
и сделаем замену
=x1.
Этот способ удобен, если функция задана
формулой.
Пример 9. (x1 (x2 x3))(x1 x2) x3 = (x1 x2 x3)(x1 x2) x3 = (x1x2 x1x3 x1x2 x2 x2x3)x3 = (x1x3 x2)x3 = x1x3x2 x3 = ((x1x31)x21)x3 = x1x2x3x2x3x3.
Надо помнить, что четное число одинаковых слагаемых в сумме по mod2 дает 0.
2. Метод неопределенных коэффициентов. Он удобен, если функция задана таблицей.
Пример 10.
Запишем с неопределенными коэффициентами полином Жегалкина для функции трех переменных f(x1, x2, x3) = (01101001) = а0 а1х1а2х2а3х3b1x1x2b2x2x3b3x1x3cx1x2x3. Затем находим коэффициенты, используя значения функции на всех наборах. На наборе (0, 0, 0) f(0, 0, 0) = 0, с другой стороны, подставив этот набор в полином, получим f(0, 0, 0) = а0, отсюда а0 = 0. f(0, 0, 1) = 1, подставив набор (0, 0, 1) в полином, получим: f(0, 0, 1) = а0 а3, т.к. а0 = 0, отсюда а3 = 1. Аналогично, f(0, 1, 0) = 1 = а2, f(0, 1, 1) = 0 = а2 а3 b2 b2 = 0; а1 = 1; 0 = а1 а3 b3 , b3 = 0; 0 = а1 а2 b1 , b1 = 0; 1 = 1 1 1 c; c = 0; тогда полином Жегалкина для данной функции примет вид: f(x1, x2, x3) = x1 x2 x3.
Многочлен Жегалкина можно получить также с помощью треугольника Паскаля по единицам его левой стороны по таблице следующим образом. Построим многочлен Жегалкина для функции f = (10011110). Верхняя сторона треугольника есть функция f. Любой другой элемент треугольника есть сумма по модулю для двух соседних элементов предыдущей строки. Левая сторона треугольника для функции f содержит шесть единиц. Многочлен Жегалкина будет содержать шесть слагаемых. Первая единица треугольника соответствует набору (000). Первое слагаемое многочлена есть 1. Третья снизу единица в левой стороне треугольника соответствует набору (101). В качестве слагаемого многочлена берем x1x3. Аналогично для других единиц треугольника. Слева от наборов показаны слагаемые многочлена Жегалкина.
N |
x1x2x3 |
f |
Треугольник Паскаля |
1 x3 x2 x2x3 x1 x1x3 x1x2 x1x2x3 |
000 001 010 011 100 101 110 111 |
1 0 0 1 1 1 1 0 |
1 0 0 1 1 1 1 0 1 0 1 0 0 0 1 1 1 1 0 0 1 0 0 1 0 1 0 1 1 1 1 0 0 1 0 1 |
Тогда
