Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Разработка дискретных систем управления-2011.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
27.38 Mб
Скачать

4. Разложение булевой функции по переменным

Обозначим через . Тогда

x=

В частности, тогда и только тогда, когда .

С помощью “степенной функции” всякую булеву функцию можно представить в виде:

называемом разложением булевой функции по переменной .

В самом деле, если , то , и

Если , то , и

Пример 4.

Разложим функцию по переменной . Для этого сначала построим таблицу функции :

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

0

1

0

1

0

1

0

0

0

0

1

0

1

0

1

1

1

1

1

0

0

0

1

1

0

0

Из таблицы видно, что и .

Используя формулу разложения по переменной , находим

Итак,

Пример 5.

Разложим функцию из примера 4 по всем переменным. Так как функция принимает значение 1 на трех наборах: , то согласно следствию из теоремы о разложении, имеем

Итак,

Определение 3.

Разложение булевой функции по всем переменным в виде

называется совершенной дизъюнктивной нормальной формой (СДНФ).

Пример 6.

- СДНФ для функции (см. пример 5).

Теорема 2.

Всякая булева функция (кроме 0) имеет единственную СДНФ.

Доказательство. Согласно следствию из теоремы о разложении

Замечание. Если под дизъюнкцией одного слагаемого понимать само это слагаемое, то дизъюнкции нуля слагаемых не существует, поэтому не существует СДНФ для функции 0.

При построении СДНФ имеет место следующее

Правило единицы. Рассматриваются только те наборы аргументов, на которых функция принимает значение 1; для каждого такого набора в СДНФ делается заготовка слагаемого . Если в данном наборе аргументов , то над переменной в заготовленном слагаемом навешивается отрицание: .

Теорема 3.

Всякая булева функция может быть выражена через дизъюнкцию, конъюнкцию и отрицание:

.

Доказательство.

Если , то . Если , то

.

Теорема 4.

Всякая булева функция (кроме 1) может быть единственным образом выражена в виде совершенной конъюнктивной нормальной форме (СКНФ):

.

Доказательство.

Если , то и

.

Применив к последнему тождеству принцип двойственности, находим

При построении СКНФ имеет место следующее

Правило нуля. Рассматриваются только те наборы аргументов, на которых функция принимает значение 0; для каждого такого набора в СКНФ делается заготовка сомножителя . Если в данном наборе аргументов , то над переменной в заготовленном сомножителе навешивается отрицание: .

Пример 7.

Построим функцию для импликации: . Импликация принимает значение 0 на одном наборе:

.

Так как в этом наборе и , то по правилу нуля получаем

.

Итак, - искомая функция для импликации.