- •1. Электростатическое поле в вакууме. Напряженность Эл. Поля.
- •4. Теорема Острогадского-Гаусса. Эл. Поле заряженной плоскости, цилиндрич. И сферич. Поверхностей
- •7. Градиент электростатического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •16. Диэлектрическая восприимчивость. Свободные и связанные заряды.
- •10. Классическая теория электропроводности металлов. Пределы ее применимости.
- •13. Электроемкость уединенного проводника. Емкость проводника, имеющего форму шара. Единица емкости.
- •31. Поле движущегося заряда. Принцип суперпозиции. З-н Био-Санара-Лапласа.
- •22.Плотность энергии электрического поля(на примере плоского конденсатора)
- •25. Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •28. Разветвленные цепи. Правило Кирхгофа.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •34. Графическое представление поля b. Теорема Гаусса для поля b.
- •37. Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля в.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряженность магнитного поля.
- •46. Способы измерения индукции магнитного поля. Единица измерения магнитного потока.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор.
- •35. Закон полного тока.
- •6. Работа электрических сил. Потенциал электростатического поля.
- •9. Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •12.Электрический ток в жидкостях. Законы электролиза Фарадея.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •18. Связь между векторами d и е.
- •21. Энергия уединенного проводника. Энергия конденсатора.
- •24. Дифференциальная форма уравнения непрерывности. Условие стационарности.
- •27.Дифференциальная форма закона Ома.
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •33. Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •36. Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •48. Взаимная индукция. Теорема взаимности.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •61. Вихревые токи.
- •55. Вынужденные колебания. Резонанс.
- •2.Закон сохранения электрического заряда,
- •58. Электромагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •29.Закон Джоуля – Ленца.
- •14. Параллельно и послед. Соединение конденсаторов. Емкости конденсаторов
- •11.Электрический заряд в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •23.Постоянный ток. Единицы измерения. Плотность тока. Ур-ие непрерывности.
- •32.Магнитное поле кругового, прямолинейного тока. Сила взаимодействия прямолинейных токов.
- •29.Закон Джоуля – Ленца. Дифференциальная форма.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность соленоида.
- •50.Энергия магнитного поля
- •41.Магнитные свойства вещества
- •5.Дифференциальная форма теоремы Остроградского – Гаусса
- •56.Уравнения Максвелла, Вектор Пойтинга.
- •17. Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференц. Формы.
- •51. Магнитная энергия тока. Плотность энергии магнитного поля. Энергия соленоида.
31. Поле движущегося заряда. Принцип суперпозиции. З-н Био-Санара-Лапласа.
Каждый
проводник с током создает в окружающем
пространстве магнитное поле. Электрический
же ток представляет собой упорядоченное
движение электрических зарядов. Поэтому
можно сказать, что любой движущийся в
вакууме или среде заряд создает вокруг
себя магнитное
поле.
В результате обобщения опытных данных
был установлен закон, определяющий поле
В точечного заряда Q, свободно движущегося
с нерелятивистской скоростью v. Под
свободным движением заряда понимается
его движение с постоянной скоростью.
Этот закон выражается формулой
![]()
где r — радиус-вектор, проведенный от заряда Q к точке наблюдения М.
Модуль
магнитной индукции вычисляется по
формуле:
,
где α — угол между векторами v и r.
Магнитное поле действует на отдельные заряды, движущиеся в магнитном поле. Сила, действующая на электрический заряд Q, движущийся в магнитном поле со скоростью v, называется силой Лоренца и выражается F=Q[vB], где В – индукция магнитного поля, в кот. заряд движется. Направление силы Лоренца определяется с помощью правила левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q<0 противоположны), то отогнутый большой палец покажет направление силы, действующей на положительный заряд.
Закон
Био — Савара — Лапласа
для проводника с током I, элемент dl
которого создает в некоторой точке А
индукцию поля dB, записывается в виде
![]()
где dl — вектор, по модулю равный длине dl элемента проводника и совпадающий по направлению с током, r—радиус-вектор, проведанный из элемента dl проводника в точку А поля, r — модуль радиуса-вектора r. Направление dB перпендикулярно dl и r, т. е. перпендикулярно плоскости, в которой они лежат, и совпадает с касательной к линии магнитной индукции. Это направление может быть найдено по правилу правого винта: направление вращения головки винта дает направление dB, если поступательное движение винта соответствует направлению тока в элементе.
Для
магнитного поля, как и для электрического,
справедлив принцип
суперпозиции:
магнитная индукция результирующего
поля, создаваемого несколькими токами
или движущимися зарядами, равна векторной
сумме магнитных индукций складываемых
полей, создаваемых каждым током или
движущимся зарядом в отдельности:
![]()
22.Плотность энергии электрического поля(на примере плоского конденсатора)
Энергия заряженного конденсатора. Как всякий заряженный проводник, конденсатор обладает энергией, которая в соответствии с формулой равна
![]()
где Q — заряд конденсатора, С — его емкость, — разность потенциалов между обкладками конденсатора.
Энергия
электростатического поля.
Преобразуем формулу выражающую энергию
плоского конденсатора посредством
зарядов и потенциалов, воспользовавшись
выражением для емкости плоского
конденсатора (C=0S/d)
и разности потенциалов между его
обкладками (=Ed.
Тогда![]()
где V= Sd — объем конденсатора. Формула показывает, что энергия конденсатора выражается через величину, характеризующую электростатическое поле, — напряженность Е.
Объемная плотность энергии электростатического поля (энергия единицы объема)
Выражение
справедливо только для
изотропного диэлектрика,
для которого выполняется соотношение
Р =æ0Е
