
- •1. Электростатическое поле в вакууме. Напряженность Эл. Поля.
- •4. Теорема Острогадского-Гаусса. Эл. Поле заряженной плоскости, цилиндрич. И сферич. Поверхностей
- •7. Градиент электростатического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •16. Диэлектрическая восприимчивость. Свободные и связанные заряды.
- •10. Классическая теория электропроводности металлов. Пределы ее применимости.
- •13. Электроемкость уединенного проводника. Емкость проводника, имеющего форму шара. Единица емкости.
- •31. Поле движущегося заряда. Принцип суперпозиции. З-н Био-Санара-Лапласа.
- •22.Плотность энергии электрического поля(на примере плоского конденсатора)
- •25. Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •28. Разветвленные цепи. Правило Кирхгофа.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •34. Графическое представление поля b. Теорема Гаусса для поля b.
- •37. Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля в.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряженность магнитного поля.
- •46. Способы измерения индукции магнитного поля. Единица измерения магнитного потока.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор.
- •35. Закон полного тока.
- •6. Работа электрических сил. Потенциал электростатического поля.
- •9. Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •12.Электрический ток в жидкостях. Законы электролиза Фарадея.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •18. Связь между векторами d и е.
- •21. Энергия уединенного проводника. Энергия конденсатора.
- •24. Дифференциальная форма уравнения непрерывности. Условие стационарности.
- •27.Дифференциальная форма закона Ома.
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •33. Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •36. Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •48. Взаимная индукция. Теорема взаимности.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •61. Вихревые токи.
- •55. Вынужденные колебания. Резонанс.
- •2.Закон сохранения электрического заряда,
- •58. Электромагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •29.Закон Джоуля – Ленца.
- •14. Параллельно и послед. Соединение конденсаторов. Емкости конденсаторов
- •11.Электрический заряд в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •23.Постоянный ток. Единицы измерения. Плотность тока. Ур-ие непрерывности.
- •32.Магнитное поле кругового, прямолинейного тока. Сила взаимодействия прямолинейных токов.
- •29.Закон Джоуля – Ленца. Дифференциальная форма.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность соленоида.
- •50.Энергия магнитного поля
- •41.Магнитные свойства вещества
- •5.Дифференциальная форма теоремы Остроградского – Гаусса
- •56.Уравнения Максвелла, Вектор Пойтинга.
- •17. Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференц. Формы.
- •51. Магнитная энергия тока. Плотность энергии магнитного поля. Энергия соленоида.
41.Магнитные свойства вещества
Все вещества, помещенные в магнитное поле, намагничиваются, т. е. сами создают магнитное поле. Поэтому индукция магнитного поля в однородной среде отличается от индукции поля в вакууме.
Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:
Все
вещества в зависимости от их магнитной
проницаемости разделяют на ферромагнетики,
парамагнетики и диамагнетики.
К ферромагнетикам относятся железо, никель, кобальт и некоторые соединения этих металлов с другими элементами. У них значения магнитной проницаемости достигают тысяч единиц. Поэтому при внесении железного сердечника в катушку с током, индукция магнитного поля увеличивается во много раз. К парамагнетикам относятся вещества, магнитная проницаемость которых немного больше единицы. (Платина, жидкий кислород) К диамагнетикам можно отнести вещества с малой магнитной проницаемостью. Они ослабляют магнитное поле. (Серебро, свинец, кварц, висмут). В состав всех антиферромагнетиков входят ионы по крайней мере одного переходного металла (Fe, Ni, Co, РЗЭ или актинидов). К ферримагнетики относятся двойные фториды. например RbNiF3, CsFeF3, некоторые сульфиды, селениды, а также ряд сплавов.
Ферромагнетизм объясняется магнитными свойствами электронов. Внутри кристалла ферромагнетика возникают намагниченные области, которые называются доменами. С увеличением магнитной индукции внешнего поля возрастает степень упорядоченности ориентации отдельных доменов – магнитная индукция возрастает. При некотором значении индукции внешнего поля наступает полное упорядочение ориентации доменов, возрастание магнитной индукции прекращается. Это явление называется магнитным насыщением. При вынесении ферромагнитного образца из внешнего магнитного поля значительная часть доменов сохраняет упорядоченную ориентацию – образец становится постоянным магнитом. Упорядоченность ориентации доменов в ферромагнетике нарушается тепловыми колебаниями атомов в кристалле. Чем выше температура кристалла, тем быстрее разрушается порядок в ориентации доменов, вследствие чего образец размагничивается. Температура, выше которой вещество перестает быть ферромагнетиком, называется температурой Кюри.
8.Электрический диполь – два одинаковых по величине равноименных точечных зарядов, находящихся на расстоянии l друг от друга, это расстояние должно быть много меньше расстояния r до точек, где рассматривается электрическое поле диполя l<<r.
q
q
Вектор, направленный по оси диполя (прямой, проходящей через оба заряда) от отрицательного заряда к положительному и равный расстоянию между ними, называется плечом диполя 1 . Вектор p=|Q|l, совпадающий по направлению с плечом диполя и равный произведению заряда |Q| на плечо l, называется электрическим моментом диполя или дипольным моментом. Согласно принципу суперпозиции, напряженность Е поля диполя в произвольной точке E=E++E- где Е+ и Е– — напряженности полей, создаваемых соответственно положительным и отрицательным зарядами.
Напряженность поля на продолжении оси диполя в точке А:
,
l/2<<r
Напряженность поля на перпендикуляре, восставленном к оси из его середины, в точке В
где
r'
— расстояние от точки В
до середины плеча диполя.Вектор ЕB
имеет направление, противоположное
вектору электрического момента диполя
(вектор р
направлен от отрицательного заряда к
положительному).