
- •1. Электростатическое поле в вакууме. Напряженность Эл. Поля.
- •4. Теорема Острогадского-Гаусса. Эл. Поле заряженной плоскости, цилиндрич. И сферич. Поверхностей
- •7. Градиент электростатического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •16. Диэлектрическая восприимчивость. Свободные и связанные заряды.
- •10. Классическая теория электропроводности металлов. Пределы ее применимости.
- •13. Электроемкость уединенного проводника. Емкость проводника, имеющего форму шара. Единица емкости.
- •31. Поле движущегося заряда. Принцип суперпозиции. З-н Био-Санара-Лапласа.
- •22.Плотность энергии электрического поля(на примере плоского конденсатора)
- •25. Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •28. Разветвленные цепи. Правило Кирхгофа.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •34. Графическое представление поля b. Теорема Гаусса для поля b.
- •37. Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля в.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряженность магнитного поля.
- •46. Способы измерения индукции магнитного поля. Единица измерения магнитного потока.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор.
- •35. Закон полного тока.
- •6. Работа электрических сил. Потенциал электростатического поля.
- •9. Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •12.Электрический ток в жидкостях. Законы электролиза Фарадея.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •18. Связь между векторами d и е.
- •21. Энергия уединенного проводника. Энергия конденсатора.
- •24. Дифференциальная форма уравнения непрерывности. Условие стационарности.
- •27.Дифференциальная форма закона Ома.
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •33. Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •36. Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •48. Взаимная индукция. Теорема взаимности.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •61. Вихревые токи.
- •55. Вынужденные колебания. Резонанс.
- •2.Закон сохранения электрического заряда,
- •58. Электромагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •29.Закон Джоуля – Ленца.
- •14. Параллельно и послед. Соединение конденсаторов. Емкости конденсаторов
- •11.Электрический заряд в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •23.Постоянный ток. Единицы измерения. Плотность тока. Ур-ие непрерывности.
- •32.Магнитное поле кругового, прямолинейного тока. Сила взаимодействия прямолинейных токов.
- •29.Закон Джоуля – Ленца. Дифференциальная форма.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность соленоида.
- •50.Энергия магнитного поля
- •41.Магнитные свойства вещества
- •5.Дифференциальная форма теоремы Остроградского – Гаусса
- •56.Уравнения Максвелла, Вектор Пойтинга.
- •17. Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференц. Формы.
- •51. Магнитная энергия тока. Плотность энергии магнитного поля. Энергия соленоида.
61. Вихревые токи.
Индукционный ток возникает не только в линейных проводниках, но и в массивных сплошных проводниках, помещенных в переменное магнитное поле. Эти токи оказываются замкнутыми в толще проводника и поэтому называются вихревыми. Их также называют токами Фуко — по имени первого исследователя.
Токи Фуко, как и индукционные токи в линейных проводниках, подчиняются правилу Ленца: их магнитное поле направлено так, чтобы противодействовать изменению магнитного потока, индуцирующему вихревые токи. Например, если между полюсами невключенного электромагнита массивный медный маятник совершает практически незатухающие колебания то при включении тока он испытывает сильное торможение и очень быстро останавливается. Это объясняется тем, что возникшие токи Фуко имеют такое направление, что действующие на них со стороны магнитного поля силы тормозят движение маятника. Этот факт используется для успокоения подвижных частей различных приборов. Если в описанном маятнике сделать радиальные вырезы, то вихревые токи ослабляются и торможение почти отсутствует.
Вихревые токи помимо торможения (как правило, нежелательного эффекта) вызывают нагревание проводников. Это дает возможность плавить металлы в вакууме.
Вихревые токи возникают и в проводах, по которым течет переменный ток. Направление этих токов можно определить по правилу Ленца( индукционный ток в контуре имеет всегда такое направление, что создаваемое им магнитное поле препятствует изменению магнитного потока, вызва¬вшему этот индукционный ток.). Вследствие возникновения вихревых токов быстропеременный ток оказывается распределенным по сечению про¬вода неравномерно — он как бы вытесняется на поверхность проводника. Это явление получило название скин-эффекта (от англ. skin — кожа) или поверхностного эффекта. Так как токи высокой частоты практически текут в тонком поверхностном слое, то провода для них делаются полыми.
55. Вынужденные колебания. Резонанс.
Колебания,
возникающие под действием внешней
периодически изменяющейся силы или
внешней периодически изменяющейся
э.д.с., называются соответственно
вынужденнымимеханическими и
вынужденными электромагнитными
колебаниями.
Явление
резкого возрастания амплитуды вынужденных
колебаний при приближении частоты
вынуждающей силы (частоты вынуждающего
переменного напряжения) к частоте,
равной или близкой собственной частоте
колебательной системы, называется
резонансом(соответственно
механическимили электрическим).
Призначениерезпрактически совпадает с собственной
частотой0колебательной системы.
На
рис. 211 представлены резонансные кривые
для амплитуды скорости (тока). Амплитуда
скорости (тока) максимальна при рез=0и равна
,т. е. чем больше коэффициент затухания, тем ниже
максимум резонансной кривой. что
амплитуда скорости при механическом
резонансе равна
а
амплитуда тока при электрическом
резонансе
Зависимость отпри разных коэффициентахграфически представлена на рис. 212, из которого следует, что при измененииизменяется и сдвиг фаз.Семейство кривых, изображенных на рис. 212, называетсяфазовыми резонансными кривыми.