
- •1. Электростатическое поле в вакууме. Напряженность Эл. Поля.
- •4. Теорема Острогадского-Гаусса. Эл. Поле заряженной плоскости, цилиндрич. И сферич. Поверхностей
- •7. Градиент электростатического потенциала и вектор е. Силовые линии поля. Эквипотенциальные поверхности.
- •16. Диэлектрическая восприимчивость. Свободные и связанные заряды.
- •10. Классическая теория электропроводности металлов. Пределы ее применимости.
- •13. Электроемкость уединенного проводника. Емкость проводника, имеющего форму шара. Единица емкости.
- •31. Поле движущегося заряда. Принцип суперпозиции. З-н Био-Санара-Лапласа.
- •22.Плотность энергии электрического поля(на примере плоского конденсатора)
- •25. Сторонние силы. Эдс. Напряжение. Обобщенный закон Ома.
- •28. Разветвленные цепи. Правило Кирхгофа.
- •20) Энергия взаимодействия системы точечных зарядов; зарядов распределенных непрерывно по объему и по поверхности
- •34. Графическое представление поля b. Теорема Гаусса для поля b.
- •37. Дифференциальная форма основных законов магнитного поля. Дивергенция и ротор поля в.
- •43. Магнитная восприимчивость и проницаемость. Намагничивание вещества. Напряженность магнитного поля.
- •46. Способы измерения индукции магнитного поля. Единица измерения магнитного потока.
- •49. Потенциальные и соленоидальные векторные поля. Необходимое и достаточное условие потенциальности векторного поля.
- •38.Магнитный момент. Силы, действующие на магнитный момент и его энергия в магнитном поле.
- •3.Основные определения векторного анализа: градиент, поток вектора, циркуляция, дивергенция, ротор.
- •35. Закон полного тока.
- •6. Работа электрических сил. Потенциал электростатического поля.
- •9. Поле внутри проводника и у его поверхности. Свойства замкнутой проводящей оболочки. Электростатическая защита.
- •12.Электрический ток в жидкостях. Законы электролиза Фарадея.
- •15. Электростатическое поле в диэлектрике. Полярные и неполярные диэлектрики.
- •18. Связь между векторами d и е.
- •21. Энергия уединенного проводника. Энергия конденсатора.
- •24. Дифференциальная форма уравнения непрерывности. Условие стационарности.
- •27.Дифференциальная форма закона Ома.
- •30. Магнитное поле. Сила Лоренца. Сила Ампера.
- •33. Дивергенция, циркуляция, ротор и поток магнитной индукции.
- •36. Магнитное поле прямого тока, бесконечного соленоида, тороида.
- •39. Работа по перемещению проводника и контура с током в магнитном поле.
- •45. Природа электромагнитной индукции. Вихревое электрическое поле.
- •48. Взаимная индукция. Теорема взаимности.
- •54. Колебательный контур. Свободные и затухающие колебания.
- •61. Вихревые токи.
- •55. Вынужденные колебания. Резонанс.
- •2.Закон сохранения электрического заряда,
- •58. Электромагнитные волны. Волновое уравнение. Поляризация. Плоские, сферические и цилиндрические волны.
- •29.Закон Джоуля – Ленца.
- •14. Параллельно и послед. Соединение конденсаторов. Емкости конденсаторов
- •11.Электрический заряд в вакууме и газах. Несамостоятельный и самостоятельный газовый разряд.
- •23.Постоянный ток. Единицы измерения. Плотность тока. Ур-ие непрерывности.
- •32.Магнитное поле кругового, прямолинейного тока. Сила взаимодействия прямолинейных токов.
- •29.Закон Джоуля – Ленца. Дифференциальная форма.
- •44. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •47. Самоиндукция. Индуктивность. Индуктивность соленоида.
- •50.Энергия магнитного поля
- •41.Магнитные свойства вещества
- •5.Дифференциальная форма теоремы Остроградского – Гаусса
- •56.Уравнения Максвелла, Вектор Пойтинга.
- •17. Электрическая индукция. Теорема Гаусса для поля вектора d. Дифференц. Формы.
- •51. Магнитная энергия тока. Плотность энергии магнитного поля. Энергия соленоида.
24. Дифференциальная форма уравнения непрерывности. Условие стационарности.
Уравнения
непрерывности выражают одинаковую
идею непрерывного
изменения некоторой величины, это
локальная форма закона
сохранения.
В электродинамике
уравнение
непрерывности
выводится из уравнений
Максвелла
- основных уравнений классической
электродинамики,
описывающие эволюцию электромагнитного
поля
и его взаимодействие с зарядами
и токами.
Оно утверждает, что дивергенция
плотности
тока
равна изменению плотности заряда со
знаком минус:
В условиях стационарности р=const, и тогда из уравнения непрерывности получается условие стационарности тока: divj = 0.
Оно означает, что поле вектора j не имеет точечных источников, а его линии замкнуты сами на себя.
27.Дифференциальная форма закона Ома.
Немецкий физик Ом экспериментально установил, что сила тока I, текущего по однородному металлическому проводнику (т.е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжениюUна концах проводника:I=U/R, гдеR —электрическое сопротивление проводника.
Сопротивление проводников зависит от его размеров и формы, а также от материала, из которого проводник изготовлен. Для однородного линейного проводника сопротивление Rпрямо пропорционально его длинеlи обратно пропорционально площади его поперечного сеченияS: R=ρ(1/S)Закон Ома можно представить в дифференциальной форме. Из двух вышеуказанных уравнений получим1/S=U/ρl
где величина, обратная удельному сопротивлению, γ =1/ρ называется удельной электрической проводимостью вещества проводника. Ее единица — сименс на метр (См/м). Учитывая, что U/l=Е — напряженность электрического поля в проводнике, I/S=j — плотность тока, полученное уравнение можно записать в виде j=γE. Это закон Ома в дифференциальном форме, связывающий плотность тока в любой точке внутри проводника с напряженностью электрического поля в этой же точке. Это соотношение справедливо и для переменных полей.
30. Магнитное поле. Сила Лоренца. Сила Ампера.
Опыт показывает, что, подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты.
Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды. Характер воздействия магнитного поля на ток различен в зависимости от формы проводника, по которому течет ток, от расположения проводника и от направления тока.
На
рамку с током магнитное поле оказывает
ориентирующее действие. Вращающий
момент, испытываемый рамкой, есть
результат действия сил на отдельные ее
элементы. Обобщая результаты исследования
действия магнитного поля на различные
проводники с током, Ампер установил,
что сила dF,
с которой магнитное поле действует на
элемент проводникаdlс током, находящегося в магнитном
поле, равнагдеdl—вектор,
по модулю равный dlи
совпадающий по направлению с током,В— вектор магнитной индукции. Направление
вектора dFможет быть найдено, согласноправилу левой руки:если ладонь
левой руки расположить так, чтобы в нее
входил векторВ, а четыре вытянутых
пальца расположить по направлению
тока в проводнике, то отогнутый большой
палец покажет направление силы,
действующей на ток. Модуль силы Ампера
вычисляется по формуле
где— угол
между векторами dlиВ.
Опыт показывает, что магнитное поле действует не только на проводники с током, но и на отдельные заряды, движущиеся в магнитном поле. Сила, действующая на электрический заряд Q,движущийся в магнитном поле со скоростьюv, называетсясилой Лоренцаи выражается формулойF=Q[vB],гдеВ—индукция магнитного поля, в котором заряд движется.
Направление силы Лоренца определяется правилом левой руки: если ладонь левой руки расположить так, чтобы в нее входил вектор В, а четыре вытянутых пальца направить вдоль вектора v (для Q>0 направления I и v совпадают, для Q<0—противоположны), то отогнутый большой палец покажет направление силы, действующей на положительный заряд.