- •1.Алгебра высказываний; пропозициональные связки и формы, истинностные таблицы
- •2.Алгебра высказываний; тавтологии и противоречия
- •3.Алгебра высказываний; логическая эквивалентность и логическое следствие
- •4. Алгебра высказываний; дизъюнктивная и конъюнктивная нормальные формы
- •5. Алгебра высказываний; полные системы функций, базис
- •6. Понятие формальной аксиоматической теории. (фат)
- •7. Исчисление высказываний, как формальная аксиоматическая теория (фат).
- •8. Формальная аксиоматическая теория (фат), определение аксиомы, правило вывода
- •9. Формальная аксиоматическая теория (фат), формализация понятий теоремы и ее док-ва.
- •10. Формальная аксиоматическая теория (фат),теорема дедукции, правило силлогизма и перестановки посылок.
- •11.Исчисление высказываний: связь между теоремами исчисления высказываний и тавтологиями.
- •12. Логика предикатов: понятия терма и предиката, кванторы.
- •13. Логика предикатов: логическая общезначимость.
- •14. Логика предикатов: эквивалентность формул логики предикатов.
- •15. Логика предикатов: нормальные.
- •16 Теория алгоритмов. Нормальные алгорифмы Маркова.
- •17.Теория алгоритмов. Интуитивное понятие алгоритма.
- •18.Теория алгоритмов. Нормальные алгорифмы Маркова,как уточнение понятия алгоритма.
- •19. Теория алгоритмов. Машина Поста.
- •20 Теория алгоритмов. Машина Тьюринга.
- •21. Исчисление высказываний. Построение доказательства Методом Modus ponens
- •22. Исчисление высказываний. Построение доказательства методом резолюций
- •23. Исчисление высказываний. Построение доказательства методом Вонга
- •X, l X; r,
- •X y, (X → y) u, z → (y → w) (w → X) → (z X).
- •X y, X y u,zy w w X;z; X.
- •24. Исчисление высказываний. Перенос высказываний через знак выводимости
18.Теория алгоритмов. Нормальные алгорифмы Маркова,как уточнение понятия алгоритма.
Однако понятно, что интуитивного определения недостаточно для того, чтобы доказать, что для решения той или иной задачи алгоритма не сущ-ет (а такие алгоритмически неразрешимые задачи в мат-ке есть).Утверждения такого рода могут быть доказаны только в рамках какого-то уточнения понятия алгоритма. Основные варианты таких уточнений- машина Поста, машина Тьюринга и нормальные алгоритмы Маркова, предложенные Марковым в 1947г.
19. Теория алгоритмов. Машина Поста.
Машина Поста (МП) — абстрактная вычислительная машина, предложенная Эмилем Постом которая отличается от машины Тьюринга большей простотой. Обе машины «эквивалентны» и были созданы для уточнения понятия «алгоритм»
МП состоит из каретки (или считывающей и записывающей головки) и разбитой на секции бесконечной в обе стороны ленты (см. пример ниже). Каждая секция ленты может быть либо пустой — 0, либо помеченной меткой 1. За один шаг каретка может сдвинуться на одну позицию влево или вправо, считать, поставить или уничтожить символ в том месте, где она стоит. Работа МП определяется программой, состоящей из конечного числа строк. Всего команд шесть:N. → J сдвиг вправо
N. ← J сдвиг влево
N. 1 J запись метки
N. 0 J удаление метки
N. ? J1, J0 условный переход по метке
N. Stop остановка, где N. — номер строки, J — строка на которую переходит управление далее.
Для работы машины нужно задать программу и ее начальное состояние (т. е. состояние ленты и позицию каретки). После запуска возможны варианты:1.работа может закончиться невыполнимой командой (стирание несуществующей метки или запись в помеченное поле);2. работа может закончиться командой Stop;3.работа никогда не закончится.
20 Теория алгоритмов. Машина Тьюринга.
Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). В состав машины Тьюринга входит бесконечная в обе стороны лента (возможны машины Тьюринга, которые имеют несколько бесконечных лент), разделённая на ячейки, и управляющее устройство, способное находиться в одном из множества состояний. Число возможных состояний управляющего устройства конечно и точно задано.Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки ленты символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.Управляющее устройство работает согласно правилам перехода, которые представляют алгоритм, реализуемый данной машиной Тьюринга. Каждое правило перехода предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния машины Тьюринга могут быть помечены как терминальные, и переход в любое из них означает конец работы, остановку алгоритма.Машина Тьюринга называется детерминированной, если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила. Если существует пара «ленточный символ — состояние», для которой существует 2 и более команд, такая машина Тьюринга называется недетерминированной.
