- •Оглавление
- •Техника безопасности при выполнении лабораторных работ
- •Общие правила по технике безопасности
- •Правила по технике безопасности для выполнения лабораторной работы с использованием химических реактивов
- •Правила по технике безопасности при работе с электроприборами
- •Глава 1. Химическая термодинамика
- •Теоретическая часть
- •Экспериментальная часть Оборудование и реактивы
- •Калориметрия. Калориметр
- •Значение плотностей растворов
- •Рекомендации по проведению расчетов
- •Экспериментальная часть Приборы и реактивы
- •Порядок проведения эксперимента
- •Управление улк с помощью компьютерных программ
- •Обработка результатов
- •Рекомендации по проведению расчетов
- •Экспериментальная часть Приборы и реактивы
- •Порядок проведения эксперимента
- •Пример расчета теплоты растворения неизвестной соли
- •Определение постоянной калориметра
- •Определение теплоты растворения неизвестной соли
- •Глава 2. Химическая кинетика
- •Теоретическая часть
- •Влияние концентрации на скорость реакции
- •Химическое равновесие
- •Реактивы и оборудование
- •Экспериментальная часть Правила работы на фотоэлектроколориметре кфк-3
- •Порядок работы
- •Опыт 1. Определение скорости химической реакции
- •Опыт 2. Влияние концентрации добавляемого вещества на смещение химического равновесия
- •Вопросы для самоконтроля и повторения
- •Компьютеризированная лабораторная работа № 5 Изучение кинетики реакции разложения карбамида в водных растворах методом электропроводности
- •Теоретическая часть
- •Экспериментальная часть Приборы и реактивы
- •Порядок проведения эксперимента
- •Управление улк с помощью компьютерных программ
- •Обработка результатов
- •Глава 3. Растворы электролитов
- •Теоретическая часть
- •Способы выражения концентрации растворов
- •Экспериментальная часть Опыт 1. Приготовление 0,1 н раствора щавелевой кислоты с помощью точной навески
- •Опыт 2. Приготовление приблизительной концентрации (0,1 н) серной кислоты разбавлением концентрированного раствора
- •Опыт 2. Определение точной концентрации раствора серной кислоты методом титрования
- •Опыт 3. Определение концентрации хлорида железа (III) фотоколориметрическим методом
- •Теоретическая часть
- •Экспериментальная часть
- •Вопросы для самоконтроля и повторения
- •Теоретическая часть
- •Экспериментальная часть Опыт 1. Приближенное определение рН водных растворов при помощи индикаторов
- •Опыт 2. Точное определение рН растворов потенциометрическим методом
- •Порядок определения рН растворов на иономере эв-74
- •Опыт 3. Гидролиз солей. Определение степени гидролиза солей методом измерения рН растворов
- •Опыт 4. Определение рН водной и солевой вытяжек из почв (уирс)
- •Вопросы для самоконтроля и повторения
- •Компьютеризированная лабораторная работа № 10 Определение произведения растворимости малорастворимых солей
- •Теоретическая часть
- •Экспериментальная часть Приборы и реактивы
- •Порядок проведения эксперимента
- •Управление улк с помощью компьютерных программ
- •Подключение ячеек
- •Управление с помощью компьютера
- •Обработка результатов
- •Экспериментальная часть Приборы и реактивы
- •Порядок проведения эксперимента
- •Управление улк с помощью компьютерных программ
- •Подключение ячеек
- •Управление с помощью компьютера
- •Глава 4. Окислительно-восстановительные процессы
- •Теоретическая часть
- •Экспериментальная часть
- •Контрольные вопросы и упражнения
- •Глава 5. Электрохимические и коррозионные процессы
- •Лабораторная работа № 13 Гальванический элемент Цель работы
- •Теоретическая часть Электродный потенциал
- •Металл Раствор
- •Электрохимические, или гальванические, элементы
- •Опыт 1. Измерение равновесного электродного потенциала металла
- •Сводная таблица определения электродных потенциалов металлов
- •Опыт 2. Определение эдс гальванического элемента
- •Теоретическая часть
- •На катоде происходит На аноде происходит окисление
- •I закон Фарадея
- •Реактивы и оборудование
- •Экспериментальная часть
- •Вопросы для самоконтроля и повторения
- •Лабораторная работа № 15 Коррозия металлов и защита от коррозии Цель работы
- •Теоретическая часть
- •Коррозионная стойкость металлов
- •Устойчивость сталей и сплавов по шкале коррозионной стойкости
- •Методы защиты металлических поверхностей от коррозии
- •Ингибирование
- •Неметаллические покрытия
- •Защита оксидными и фосфатными пленками
- •Металлические покрытия
- •Протекторная защита
- •Электрозащита или катодная защита
- •Легирование
- •Опыт 2. Защита стали и чугуна методом оксидирования (уирс)
- •Опыт 3. Коррозия металлических поверхностей в кислой среде (уирс)
- •Вопросы для самоконтроля и повторения
- •Глава 6. Аналитическая химия. Качественный анализ
- •Предмет и задачи аналитической химии
- •2. Методы аналитической химии
- •3. Общие представления о качественном анализе
- •4. Общие представления о количественном анализе
- •Экспериментальная часть Опыт 1. Качественные реакции на некоторые катионы и анионы
- •Проба на окрашивание пламени
- •5. Действия хлорида бария BaCl2 на анионы so42-, co32- или po43-
- •Действия нитрата серебра (I) AgNo3 на анионы Cl-, Br -, s2-
- •Опыт 2. Определение жесткости воды титриметрическим методом
- •Определение временной жесткости воды
- •Определение общей жесткости воды
- •Вопросы для самоконтроля и повторения
- •Глава 7. Поверхностные явления Лабораторная работа № 17 Адсорбция. Адсорбционное равновесие
- •Теоретическая часть
- •Адсорбция на границе раздела твердое тело-газ
- •Экспериментальная часть
- •Адсорбцию (а, мг/г) рассчитывают по формуле
- •Опыт 2. Десорбция метилового оранжевого (Учебно-исследовательская работа)
- •Порядок проведения эксперимента
- •Вопросы для самоконтроля и повторения
- •Лабораторная работа № 18 определение краевого угла смачивания твердых тел
- •Теоретическая часть
- •Экспериментальная часть
- •Порядок проведения эксперимента
- •Глава 8. Химия неметаллов
- •Углерод
- •Кремний
- •Полупроводниковые материалы на основе кремния, германия, сурьмы и висмута
- •Экспериментальная часть Опыт 1. Получение ортоборной (борной) кислоты
- •Опыт 2. Гидролиз тетрабората натрия
- •Опыт 3. Соли угольной кислоты (карбонаты)
- •Опыт 4. Свойства карбида кальция
- •Опыт 5. Получение геля и золя кремниевой кислоты
- •Опыт 6. Гидролиз солей кремниевой кислоты (силикатов)
- •Опыт 8. Гидролиз соли висмута (III)
- •Глава 9. Химия полимеров
- •Материалы, получаемые на основе полимеров
- •Применение полимеров
- •Экспериментальная часть Опыт 1. Растворимость пластмасс
- •Опыт 2. Отверждение эпоксидной смолы Порядок проведения эксперимента
- •Опыт 3. Определение температуры размягчения полимера
- •Опыт 4. Определение показателя условной вязкости полимера
- •Порядок проведения эксперимента
- •Вопросы для самоконтроля и повторения
- •Библиографический список
- •394087, Г. Воронеж, ул. Докучаева, 10
Обработка результатов
1. После проведения всех измерений мы получим первичный график зависимости ЭДС от концентрации галогенид-иона в растворе.
2. Для получения наиболее правильных результатов необходимо линеаризовать полученную зависимость. Для этого все точки первичного графика передаются на результирующий график путем нажатия кнопки в нижней части окна первичных графиков. При этом все точки передаются на результирующий график и происходит автоматическое переключение программы на соответствующее окно.
Линеаризация проводится путем замены переменной X (абсцисса преобразованной зависимости) на соответствующую функцию от исходной переменной x (абсцисса исходной зависимости). Теоретически прямая линия должна получаться в координатах E от ln сCl- , поэтому в соответствующем поле преобразования абсциссы вводится: ln(x*«значение концентрации»).
Расчет параметров линейной регрессии производится по методу наименьших квадратов (МНК). Для этого на управляющей палитре в верхней части окна нажимается кнопка с пиктограммой линейного графика (с подсказкой «Прямая линия по МНК»). Появляется окно «Линейный МНК», в котором устанавливается диапазон точек для расчета прямой, в случае, когда линейность наблюдается только в ограниченном диапазоне графика и необходимо проведение расчета только в линейном диапазоне. Выпадающие точки могут быть исключены из расчета в таблице значений результирующего графика простым кликом « мышки».
Полученные графики могут быть распечатаны на принтере с сохранением выбранного масштаба и элементов оформления. Для этого необходимо перейти в окно «Отчет» и выбрать требуемые для печати графики.
Вопросы для самоконтроля и повторения
Что такое произведение растворимости?
Выразите значение произведения растворимости исследуемой соли от потенциала используемой электрохимической цепи и концентраций потенциалопределяющих веществ.
Дайте определение гальванического элемента.
Запишите уравнение Нернста
Дайте определение ЭДС гальванического факультета
Компьютеризированная лабораторная работа № 11
Определение значений водородного показателя (рН) водных растворов
Цель работы: определить значения pH ряда водных растворов методом потенциометрии. Для этого необходимо:
- измерить ЭДС гальванического элемента с раствором, pH которого известна, составленного из стеклянного и хлорсеребряного электродов;
- измерить ЭДС гальванического элемента с различными растворами, pH которых неизвестна;
- рассчитать значения pH исследованных растворов.
Теоретическая часть
В настоящее время кислотность среды принято выражать с помощью водородного показателя (pH). Водородный показатель это отрицательный десятичный логарифм активности иона водорода в растворе.
pH = -lg сH+
Так как ионное произведение воды KW = сH+ сOH- = 10-14 при 298 К, то при значениях pH меньше 7 ионов водорода будет больше, чем гидроксид-ионов и говорят, что среда кислая. Если же значение pH больше 7, то соответственно, говорят, что среда щелочная.
Измерение водородного показателя методом потенциометрии осуществляется при помощи электродов, потенциал которых зависит от концентрации иона водорода в растворе. Наиболее распространенными для этой цели в лабораторной практике является стеклянный электрод.
Стеклянный электрод – ион-селективный электрод селективный по отношению к ионам водорода находящимся в растворе. Потенциал стеклянного электрода зависит от концентрации ионов водорода следующим образом:
,
b
= RTln10/F.
(1)
Для определения рН некоторого раствора составляют цепь, состоящую из стеклянного электрода, погруженного в исследуемый раствор, и электрода сравнения, потенциал которого сохраняется постоянным в ходе эксперимента. В современной практике в качестве электрода сравнения обычно используется насыщенный хлорсеребряный электрод (ХСЭ). Тогда мы можем записать ЭДС всей цепи
E = Eст – EХСЭ = E0ст –b pH - EХСЭ. (2)
Следовательно, потенциал такого элемента будет линеен относительно значения рН. Зная потенциал элемента, содержащего раствор с известным значением рН, можно рассчитать значение всех постоянных величин, входящих в уравнение. В нашем случае – это стандартный потенциал стеклянного электрода и потенциал ХСЭ. Обозначим их разницу как Е' и выразим через потенциал элемента и значение рН раствора
Е' = E0ст – EХСЭ = E –b pH. (3)
Экспериментально определив Е' мы сможем определить рН другого раствора, с неизвестным значением рН, по формуле
.
(4)
Для экспериментального определения Е' используют буферные растворы с приписанными значениями рН. Составы буферных растворов и приписанное им значение рН можно найти в справочной литературе. Промышленностью выпускаются стандарт-титры для приготовления буферных растворов.
Применяемые для рН-метрии стеклянные электроды, имеют линейную характеристику в довольно широких диапазонах температур и значений рН. Например, электрод ЭСЛ-43-07 имеет линейную характеристику в диапазоне значений рН от 0 до 12 (при 298 К).
В настоящее время измерение значений рН с помощью стеклянного электрода получило наибольшее распространение в лабораторной практике. Однако наряду с достоинствами он имеет и ряд недостатков. Главный его недостаток это хрупкость (поэтому обращайтесь со стеклянным электродом предельно осторожно). Другим его недостатком является достаточно долгое установление равновесного значения потенциала (около пяти минут). Сопротивление стеклянного электрода достаточно велико (от десятков до сотен МОм), поэтому при работе с ним необходимо использовать потенциометры с высоким входным сопротивлением.
