- •1.Основные законы атомно-молекулярной теории.
- •2. Закон Авогадро
- •3. Строение электронных оболочек атома. Атомные орбитали.
- •3)Модель Бора-Зоммерфельда
- •4.Типы химической связи и методы ее описания (методы мо и вс).
- •5) Понятие энтальпии. Энтальпия реакция. Энтальпия образования химических соединений.
- •6.Законы термохимии. Определение средней энергии связи.
- •Закон Гесса
- •Закон Кирхгофа
- •7.Понятие энтропии. Стандартные значения энтропии, изменение энтропии в химической реакции.
- •Энергия Гиббса и направление протекания реакции
- •9.Направление химической реакции. Принципиальная возможность протекания процесса.
- •11.Цепные реакции. Экологическое значение ц.Р. Озоновый слой. Возникновение и разрушение озонового слоя планеты.
- •12. Химическое равновесие. Константа равновесия. Смещение равновесий. Принцип Ле-Шателье.
- •Смещение химического равновесия
- •13.Общая характеристика растворов. Способы выражения концентрации растворов.
- •Вопрос 19
- •1. По агрегатному состоянию
- •15.Водные растворы электролитов и неэлектролитов. Сильные и слабые электролиты.
- •16.Ионные равновесия в растворах слабых электролитов. Константа и степень диссоциации, буферные растворы.
- •17.Водородный показатель. Ионное произведение воды.
- •18.Гидролиз солей. Степень и константа гидролиза
- •Вопрос 37
- •19.Дисперсные системы.
- •20.Окислительно-восстановительные реакции. Понятие восстановительного потенциала.
- •21.Общая характеристика элементов 1-7 групп периодической системы:
- •22.Химия воды.
- •Константа воды, ионное уравнение pH воды
- •PH воды
7.Понятие энтропии. Стандартные значения энтропии, изменение энтропии в химической реакции.
Второй закон термодинамики. Энтропия как мера упорядоченности.
Любая термодинамическая система обладает не только определенным запасом внутренней энергии, но и характеризуется определенной степенью упорядоченности.
Второй термодинамической функцией состояния является энтропия – функция, ответственная за неупорядоченность состояния данной химической системы: чем большей хаотичностью и беспорядком (т.е. большей неупорядоченностью) характеризуется данная система, тем больше величина энтропии. Энтропия обозначается латинской буквой S и измеряется в Дж/K. Это значит, что любая изолированная система, представленная самой себе, самопроизвольно изменяется в направлении максимальной хаотичности своего состояния.
Рассмотрим пример: Поместим в сосуд с перегородкой два газа азот и аргон. Обозначим это состояние системы S1. В данном состоянии оба газа имеют определенную степень упорядоченности (степень беспорядка). После того, как уберем перегородку, газы начнут смешиваться. Это второе состояние системы обозначим S2. Степень беспорядка увеличилась. Произошло самопроизвольное увеличение энтропии ΔS = S2 – S1
8.Энергия Гиббса. Стандартные значения свободной энергии.Изменение свободной энергии в химической реакции.
8) Свободная энергия Гиббса — это величина, показывающая изменение энергии в ходе химической реакции и дающая таким образом ответ на принципиальную возможность химической реакции; это термодинамический потенциал следующего вида:
где U — внутренняя
энергия, P — давление, V — объем, T —
абсолютная температура, S —энтропия.
Энергия Гиббса и направление протекания реакции
В химических процессах одновременно действуют два противоположных фактора — энтропийный (TΔS) и энтальпийный (ΔH). Суммарный эффект этих противоположных факторов в процессах, протекающих при постоянном давлении и температуре, определяет изменение энергии Гиббса (G):
Из
этого выражения следует, что
,
то есть некоторое количество
теплоты расходуется
на увеличение энтропии (TΔS),
эта часть энергии потеряна для совершения
полезной работы,
её часто называют связанной
энергией. Другая часть теплоты (ΔG)
может быть использована для совершения
работы, поэтому энергию Гиббса часто
называют также свободной
энергией.
При ΔG < 0 процесс может протекать, при ΔG > 0 не может, Если же ΔG = 0- состояние равновесия.
Существует
полезное соотношение, связывающее
изменение свободной энергии Гиббса
в
ходе химической реакции с еёконстантой
равновесия
:
Вообще говоря, любая реакция может быть рассмотрена как обратимая (даже если на практике она таковой не является). При этом константа равновесия определяется как
где
— константа
скорости прямой
реакции,
—
константа скорости обратной реакции.
9.Направление химической реакции. Принципиальная возможность протекания процесса.
Многие химические реакции протекают самопроизвольно, т.е. без затрат энергии извне. Одной из движущих сил самопроизвольного химического процесса является уменьшение энтальпии системы, т.е. экзотермический тепловой эффект реакции. Другой – стремление частиц (молекул, ионов, атомов) к хаотическому движению, беспорядку. Мерой хаотичности, неупорядоченности состояния системы служит термодинамическая функция, называемая энтропией (S).
При переходе системы из более упорядоченного состояния в менее упорядоченное состояние (нагревание, испарение, плавление) энтропия возрастает (DS>0). В случае перехода системы из менее упорядоченного состояния в более упорядоченное (охлаждение, конденсация, кристаллизация) энтропия системы уменьшается (DS<0).
В изолированных системах самопроизвольно идут только такие процессы, которые сопровождаются возрастанием энтропии (DS>0) – это суть второго закона термодинамики.
Энтропия вещества в стандартном состоянии называется стандартной энтропией (So) и имеет единицу измерения Дж/моль•К.
Изменение энтропии системы в результате протекания химической реакции (DSo) равно сумме энтропий продуктов реакции за вычетом энтропий исходных веществ с учетом стехиометрических коэффициентов:
DSo = SSoпрод - SSoисх.
Энтропия вещества в газообразном состоянии существенно выше, чем в жидком и твердом состояниях, поэтому об изменении энтропии в химической реакции судят по изменению числа молей газообразных веществ. Например, в реакции
С(к) + СО2(г) = 2СО(г)
из одного моля СО2 образуется 2 моля СО, следовательно энтропия возрастает (DS>0).
В реакции образования аммиака
N2(г) + 3Н2(г) = 2NH3(г)
энтропия уменьшается, т.к. число молей NH3 меньше суммы молей N2 и Н2.
Возможность самопроизвольного протекания химического процесса определяется двумя факторами:
- стремлением к образованию прочных связей между частицами, к возникновению более сложных веществ, что сопровождается понижением энергии системы – энтальпийный фактор (DH<0);
- стремлением к разъединению частиц, к беспорядку, что характеризуется возрастанием энтропии – энтропийный фактор (DS>0).
Эти факторы объединяет функция, называемая энергией Гиббса (DG), равная:
DG = DH - T•DS.
Изменение энергии Гиббса служит критерием самопроизвольного протекания химической реакции:
- химическая реакция принципиально возможна, если энергия Гиббса в ходе реакции уменьшается (DG<0);
- химическая реакция не может протекать самопроизвольно, если энергия Гиббса системы возрастает (DG>0), протекает обратная реакция;
- химическая реакция может протекать как в прямом, так и в обратном направлении, т.е. система находится в состоянии равновесия (DG=0).
Из уравнения DG=DH-T•DS следует:
- если DН<0 и DS>0, то всегда DG<0, т.е. реакция с выделением теплоты и увеличением степени беспорядка возможна при любых температурах;
- если DH>0 и DS<0, то всегда DG>0, т.е. реакция с поглощением теплоты и увеличением степени порядка невозможна ни при каких условиях;
- DH>0, DS<0. Реакция будет протекать в прямом направлении только при условии, что |T•DS|>|DH|. Эти реакции протекают при высокой температуре;
- DH<0, DS>0. Условие самопроизвольного протекания реакции: |DH|>|T•DS|. Такие реакции идут обычно при низких температурах.
Температуру, при которой происходит смена знака энергии Гиббса реакции, можно определить из условия равновесия:
Тр = DH/DS
где Тр – температура, при которой устанавливается равновесие.
Изменение энергии Гиббса системы при образовании 1 моль вещества из простых веществ, устойчивых в стандартных условиях, называется стандартной энергией Гиббса образования вещества (DGof). Стандартная энергия Гиббса образования простых веществ принимается равной нулю.
Стандартную энергию Гиббса химической реакции (DGor) можно рассчитать как сумму стандартных энергий Гиббса образования продуктов реакции за вычетом суммы энергий Гиббса образования исходных веществ с учетом стехиометрических коэффициентов:
10.Скорость химической реакции. Кинетическое уравнение реакции. Порядок и молекулярность реакции. Энергия активации. Катализ.
Скорость химической реакции – это изменение количества реагирующего вещества или продукта реакции за единицу времени в единице объема (для гомогенной реакции) или на единице поверхности раздела фаз (для гетерогенной реакции).
Гомогенной называется реакция, протекающая в однородной среде (в одной фазе). Гетерогенные реакции протекают на границе раздела фаз, например твердой и жидкой, твердой и газообразной. Отношение количества вещества к единице объема называется концентрацией с, моль/л.
Различают среднюю и мгновенную скорости реакции. Средняя скорость реакции равна:
,
где с2и с1 – концентрации исходного вещества в момент времени t2 и t1.
Знак минус означает, что концентрация исходного вещества уменьшается. В ходе реакции изменяются концентрации реагирующих веществ и соответственно скорость реакции. Скорость реакции в данный момент времени или, мгновенная (истинная) скорость реакции, равна:
Скорость реакции принимается всегда положительной, поэтому производная исходных концентраций берется со знаком минус, а продуктов реакции – со знаком плюс.
Скорость реакции имеет единицу измерения [моль м-3 с-1], [моль л-1с-1].
Скорость реакции зависит от природы реагирующих веществ. Некоторые реакции протекают со взрывом, другие могут идти годами. На скорость реакции влияют такие факторы как концентрация веществ, температура, катализаторы.
Кинетическое уравнение, выражает зависимость скорости хим. реакции от концентраций компонентов реакционной смеси. Для простой (одностадийной) гомогенной реакции скорость v пропорциональна произведению концентраций реагирующих веществ и кинетическое уравнение записывается в виде:
где [Ai] (i=1,2,...,l) - концентрация i-го вещества, ni-порядок реакции по i-му веществу, k-константа скорости р-ции.
Например: CO(г) + H2O (г) = H2(г) + CO2 (г)
Уравнение для скорости прямой реакции: v(пр) = k(пр) *c(CO)*c(H2O) для обратной реакции: v(обр) = k(обр) *c(H2)*c(CO2) Здесь k - константы скорости, с- текущие концентрации веществ.
Для элементарных реакций показатель степени при значении концентрации каждого вещества часто равен его стехиометрическому коэффициенту, для сложных реакций это правило не соблюдается. Кроме концентрации на скорость химической реакции оказывают влияние следующие факторы:
природа реагирующих веществ,
наличие катализатора,
температура (правило Вант-Гоффа),
давление,
площадь поверхности реагирующих веществ.
Если мы рассмотрим самую простую химическую реакцию A + B → C, то мы заметим, что мгновенная скорость химической реакции величина непостоянная.
Молекулярность реакции – это минимальное число молекул, участвующих в элементарном химическом процессе. По молекулярности элементарные химические реакции делятся на молекулярные (А →) и бимолекулярные (А + В →); тримолекулярные реакции встречаются чрезвычайно редко. Если реакция протекает последовательно через несколько гомогенных или гетерогенных элементарных стадий, то суммарная скорость всего процесса определяется самой медленной его частью, а молекулярность заменяется порядком реакции – формальным показателем при концентрации реагирующих веществ. Поэтому весь процесс в целом лучше характеризует порядок реакции. Порядок реакции по данному веществу — показатель степени при концентрации этого вещества в кинетическом уравнении реакции.
Катализ — процесс, заключающийся в изменении скорости химических реакций в присутствии веществ, называемых катализаторами. Каталитические реакции — реакции, протекающие в присутствии катализаторов.
Энергия активации — минимальное количество энергии, которое требуется сообщить системе (в химии выражается в джоулях на моль), чтобы произошла реакция. Типичное обозначение энергии реакции Ea.
В химической модели ТАС, есть три условия, необходимых для того, чтобы произошла реакция:
Молекулы должны столкнуться. Это важное условие, однако его не достаточно, так как при столкновении не обязательно произойдёт реакция.
Молекулы должны обладать необходимой энергией (энергией активации). В процессе химической реакции взаимодействующие молекулы должны пройти через промежуточное состояние, которое может обладать большей энергией. То есть молекулы должны преодолеть энергетический барьер; если этого не произойдёт, реакция не начнётся.
Молекулы должны быть правильно ориентированы относительно друг друга.
Уравнение Аррениуса устанавливает связь между энергией активации и скоростью протекания реакции:
k — константа скорости реакции, A — фактор частоты для реакции, R — универсальная газовая постоянная, T — температура в кельвинах.
