- •1.Основные законы атомно-молекулярной теории.
- •2. Закон Авогадро
- •3. Строение электронных оболочек атома. Атомные орбитали.
- •3)Модель Бора-Зоммерфельда
- •4.Типы химической связи и методы ее описания (методы мо и вс).
- •5) Понятие энтальпии. Энтальпия реакция. Энтальпия образования химических соединений.
- •6.Законы термохимии. Определение средней энергии связи.
- •Закон Гесса
- •Закон Кирхгофа
- •7.Понятие энтропии. Стандартные значения энтропии, изменение энтропии в химической реакции.
- •Энергия Гиббса и направление протекания реакции
- •9.Направление химической реакции. Принципиальная возможность протекания процесса.
- •11.Цепные реакции. Экологическое значение ц.Р. Озоновый слой. Возникновение и разрушение озонового слоя планеты.
- •12. Химическое равновесие. Константа равновесия. Смещение равновесий. Принцип Ле-Шателье.
- •Смещение химического равновесия
- •13.Общая характеристика растворов. Способы выражения концентрации растворов.
- •Вопрос 19
- •1. По агрегатному состоянию
- •15.Водные растворы электролитов и неэлектролитов. Сильные и слабые электролиты.
- •16.Ионные равновесия в растворах слабых электролитов. Константа и степень диссоциации, буферные растворы.
- •17.Водородный показатель. Ионное произведение воды.
- •18.Гидролиз солей. Степень и константа гидролиза
- •Вопрос 37
- •19.Дисперсные системы.
- •20.Окислительно-восстановительные реакции. Понятие восстановительного потенциала.
- •21.Общая характеристика элементов 1-7 групп периодической системы:
- •22.Химия воды.
- •Константа воды, ионное уравнение pH воды
- •PH воды
Вопрос 37
--------------------------------------------------------------------------------------------
Обменная реакция между водой и соединением называется гидролизом.
Гидролиз солей - взаимодействие в водных растворах катионов и (или) анионов солей с молекулами воды, при котором к катиону, оказавшемуся в растворе, присоединяется группа ОН- , а к аниону - ион Н+ молекулы воды.
В результате гидролиза в растворе появляются ионы Н+ и ОН-, и среда становится соответственно кислой или щелочной.
Возможны следующие случаи гидролиза солей:
1) по аниону,
2)катиону,
3) катиону и аниону одновременно.
Рассмотрим подробно каждый из этих случаев.
Гидролиз по аниону. Ему подвергаются соли, образованные катионом сильного основания и анионом слабой кислоты (К2СОз, Na2S, Na2SO3, K3PO4 и др.). При гидролизе создается щелочная среда (рН > 7).
Гидролиз по катиону. Ему подвергаются соли, образованные катионом слабого основания и анионом сильной кислоты (NH4Br, ZnCl2, Cu(NO3)2 и др.). При гидролизе таких солей идет подкисление среды (рН < 7).
Гидролиз – реакция обмена между солью и водой, приводящая к образованию слабого электролита и изменению рН среды.
Гидролиз солей – это процесс, обратный нейтрализации:
KtAn + HOH →← KtOH + HAn
Вода является слабым электролитом, и для смещения данного равновесия вправо необходимо, чтобы среди продуктов реакции был хотя бы один слабый электролит.
В процессе гидролиза происходит обмен
между солью и водой теми ионами, которые
могут соединиться в молекулы
слабодиссоциирующего вещества. При
этом оставшиеся от воды ионы
или
накапливаются
в растворе и обуславливают кислую или
щелочную реакцию среды.
19.Дисперсные системы.
Диспе́рсная систе́ма — это образования из двух или более числа фаз (тел), которые совершенно или практически не смешиваются и не реагируют друг с другом химически. Первое из веществ (дисперсная фаза) мелко распределено во втором (дисперсионная среда)
Основные типы дисперсных систем. По дисперсности, т. е. размеру частиц дисперсной условно делят на грубодисперсные и тонко(высоко)дисперсные. наз. коллоидно-дисперсными или просто коллоидными системами. В грубодисперсных системах частицы имеют размеры от 1 мкм и выше (уд. пов-сть не более 1 м2/г), в коллоидных - от 1 нм до 1 мкм (уд. пов-сть достигает сотен м2/г). Дисперсность оценивают по усредненному показателю (среднему размеру частиц, уд. пов-сти) или дисперсному составу.
По агрегатному состоянию дисперсной фазы и дисперсионной среды различают следующие дисперсные системы (табл.9):
Таблица 9. Классификация дисперсных систем по агрегатным состояниям дисперсной фазы и дисперсионной среды
Дисперсионная среда |
Дисперсная фаза |
||
Твердая |
Жидкая |
Газообразная |
|
Жидкая |
Золи, суспензии, гели, пасты |
Эмульсии |
Газовые эмульсии, пены |
Твердая |
Твердые золи, сплавы |
Твердые эмульсии |
Твердые пены |
Газообразная |
Дым, пыль |
Туманы |
Отсутствуют |
Аэрозоли представляют собой системы с газообразной дисперсионной средой. Они делятся на туманы — аэрозоли с жидкой дисперсной фазой, пыли и дымы — аэрозоли с твердой дисперсной фазой (пыли образуются при измельчении твердых веществ, а дымы при конденсации твердых веществ из газовой фазы).
Дисперсии в жидкой среде делятся на пены (дисперсная фаза газ), эмульсии (дисперсная фаза жидкость), суспензии или взвеси (грубодисперсные системы твердых частиц в жидкостях) и коллоидные растворы или золи (тонкодисперсные системы твердых частиц в жидкостях).
Слово «золь» произошло от латинского слова (solutio), обозначающего раствор.
Дисперсии в твердых телах представляют собой системы с твердой дисперсионной средой. К ним относятся твердые пены (дисперсная фаза газ, например, пенобетоны, пенопласт, хлеб и т.п.), твердые эмульсии (дисперсная фаза жидкость, например, жемчуг, где в твердом карбонате кальция диспергирована вода), а также системы типа твердое в твердом: например, рубиновое стекло, в котором в силикатном стекле находятся частички золота размером 4-30 мкм.
В зависимости от того, одинаковы или нет размеры частиц, различают соответственно монодисперсные и полидисперсные системы. Подавляющее большинство реальных систем полидисперсны.
Дисперсные системы подразделяют также по характеру взаимодействия между частицами дисперсной фазы на свободнодисперсные и связаннодисперсные.
Свободнодисперсные системы - дисперсные системы, в которых частицы дисперсной фазы свободны и могут независимо друг от друга перемещаться в дисперсионной среде. Такие системы обладают текучестью.
Примеры: золи, суспензии, аэрозоли…
Связаннодисперсные (структурированные) системы - дисперсные системы, в которых частицы связаны между собой межмолекулярными силами, образуя трехмерную пространственную структуру.
Примеры: гели, студни…
