- •Оглавление
- •Глава 1. Усилители биопотенциалов 8
- •Глава2 Функциональные устройства на операционных усилителях для медицинских изделий 74
- •Предисловие
- •Список принятых сокращений и обозначений
- •Введение
- •Глава 1. Усилители биопотенциалов
- •Контакт усилителя биопотенциалов с кожей через электроды
- •1.2. Входные цепи усилителей биопотенциалов.
- •1.3. Операционные усилители в цепях регистрации биопотенциалов.
- •1.4. Применение инвертирующих и неинвертирующих усилителей в медицинском приборостроении
- •1.5. Схемы подавления синфазных помех с помощью дифференциальных и инструментальных усилителей
- •1.6. Подключение усилителей биопотенциалов к микроэлектродам
- •1.7. Усилители с гальванической развязкой
- •Тренировочные задания
- •Тестовые задания
- •Глава2 Функциональные устройства на операционных усилителях для медицинских изделий
- •2.1. Линейные узлы математической обработки биологических сигналов
- •2.1.1. Схемы масштабирования и аналоговые сумматоры
- •2.1.2. Усилители переменного тока
- •2.1.3. Схемы интегрирования
- •2.1.4. Схемы дифференцирования
- •2.2. Активные электрические фильтры
- •2.2.1. Классификация и основные характеристики фильтров
- •2.2.2. Типовые схемы активных фильтров
- •2.2.3. Методы расчета фильтров на основе анализа передаточных функций
- •2.2.4. Подавление помех активными фильтрами
- •2.3. Линейные преобразователи сигналов
- •2.4. Нелинейные преобразователи аналоговых сигналов
- •2.4.1. Сравнивающие устройства (компараторы)
- •2.4.2. Логарифмирующие и экспоненциальные преобразователи
- •2.4.3. Выпрямители
- •2.4.4. Множительно-делительные устройства
- •2.4.5. Использование диодных структур для реализации типовых и произвольных нелинейных зависимостей
- •2.5. Элементы аналоговой памяти
- •2.5.1. Устройства выборки-хранения
- •2.5.2. Амплитудные (пиковые) детекторы
- •Тренировочные задания
- •Тестовые задания
- •Глава 3 Генераторы сигналов
- •3.1. Генераторы синусоидальных (гармонических) сигналов
- •3.2. Аналоговые генераторы прямоугольных импульсов
- •3.3. Интегральные таймеры и генераторы на их основе
- •3.4. Генераторы линейно-изменяющегося напряжения
- •3.5. Функциональные генераторы
- •3.6. Модуляторы
- •3.7. Фазочувствительные детекторы
- •Тренировочные задания
- •Рубежный тест к главе 3
- •Глава 4 Вторичные источники электропитания
- •4.1. Основные структурные схемы
- •4.2 Основные схемы выпрямителей
- •4.3 Сглаживающие фильтры
- •4.4 Линейные стабилизаторы напряжения
- •4.5. Схемотехника импульсных стабилизаторов напряжения
- •4.6. Инверторные схемы
- •Тренировочные задания
- •Тестовые задания
- •Глава 5 Аналоговые коммутаторы
- •5.1. Коммутаторы на полевых транзисторах
- •5.2. Аналоговые мультиплексоры и матричные коммутаторы
- •5.3. Характеристики и эксплуатационные параметры аналоговых коммутаторов
- •Тренировочные задания
- •Рубежный тест к главе 5
- •Глава 6 Устройства непрерывно-дискретного преобразования сигналов
- •6.1. Цифроаналоговые преобразователи
- •6.1.1. Схемотехника параллельных цап
- •6.1.2. Последовательные цап
- •6.1.3. Параметры цап
- •6.2. Аналогово-цифровые преобразователи
- •6.2.1. Процедура аналогово-цифрового преобразования и основные параметры ацп
- •6.2.2. Схемотехника ацп
- •6.2.3. Особенности реализации и использования сигма-дельта ацп
- •6.2.4. Технические характеристики и применение ацп
- •Тренировочные задания
- •Тестовые задания
- •Глава 7. Приборы с зарядовой связью.
- •7.1. Устройство пзс.
- •7.2. Принцип организации пзс-матриц.
- •7.3. Параметры и характеристики пзс.
- •Тренировочные задания.
- •Тестовые задания
- •Глава 8 Интерфейсы для подключения узлов медицинской техники к микропроцессорам, микроконтроллерам и пэвм
- •8.1. Интерфейсы магистралей пэвм
- •8.1.1. Организация системной магистрали типа isa
- •8.1.2. Организация обмена по шине isa
- •8.1.3. Обмен с внешними устройствами по шине pci
- •8.1.4. Взаимодействие медицинского оборудования с пэвм через последовательный порт типа rs232
- •8.1.5. Подключение оборудования к пэвм через интерфейс usb.
- •8.2. Интерфейсы ацп
- •8.3. Цифровые интерфейсы узлов медицинской техники
- •Тренировочные задания
- •Тестовые задания
- •Глава 9. Компьютерные технологии расчета и проектирования узлов медицинской техники.
- •9.1. Особенности технологического процесса проектирования средств медицинской техники с использованием сапр
- •9.2. Основные объекты медицинских изделий, проектируемых с помощью сапр.
- •9.3. Автоматизация проектирования печатных плат и биомедицинских лабораторий на их основе.
- •Заключение.
- •Библиографический список.
- •Итоговый тест
Введение
Современная медицина немыслима без использования разнообразных технических средств, причем при разработке и конструировании медицинских аппаратов, систем и комплексов используются самые последние достижения, полученные в физике, математике, механике, электронике, вычислительной технике и других отраслях человеческих знаний.
Значительную роль в обеспечении широких функциональных возможностей и высокой надежности средств медицинской техники играет используемая элементная база.
Из-за огромного многообразия схемотехнических решений, используемых в медицинском приборостроении, в настоящее время мало книг, в которых с достаточной полнотой изложены хотя бы основные технические решения, используемые при построении элементов и узлов современных медицинских приборов, аппаратов, систем и комплексов.
Поэтому издание учебных пособий, где достаточно полно описывается схемотехника медицинского приборостроения, является актуальной задачей. Объектом изучения предлагаемого учебного пособия являются различные типы биоусилителей, узлы математической обработки биологических сигналов, вторичные источники питания, интерфейсы для подключения элементов и узлов медицинской техники к ПЭВМ и другое электронное оборудование, используемое для построения диагностической и терапевтической техники.
В историческом аспекте современное представление об электричестве в значительной мере связано с биомедициной, когда задолго до законов Ома и Фарадея Л. Гальвани наблюдал форму электрического разряда, которую он связывал с генерированием тока биологической тканью. Значительным толчком в применении технических средств в медицине стало изобретение электрокардиографии (О. Уолтер, 1865г. и В. Эйнховен, 1893г.). Благодаря достижениям в области проектирования биомедицинских электронных систем, целый ряд физиологов был удостоен Нобелевской премии.
С развитием средств электроники, микроэлектроники и вычислительной техники в медицинском приборостроении произошел переход к высоким медицинским технологиям, давшим в руки исследователей аппараты, системы и комплексы, позволяющие всесторонне изучать функционирование различных подсистем человека от клетки и ее структуры до функциональных систем и организма в целом. Появились новые способы лечения, вплоть до замещения утраченных функций и даже отдельных органов.
Учебное пособие написано с учетом того, что обучающиеся уже изучили дисциплины «Общая электротехника», «Электроника и микропроцессорная техника» и «Измерительные преобразователи и электроды».
После прочтения предлагаемого пособия обучающиеся могут приступать к изучению дисциплин «Медицинские приборы, аппараты, системы и комплексы», «Проектирование диагностической терапевтической техники».
Глава 1. Усилители биопотенциалов
При регистрации биопотенциалов их источником служат живые объекты, которые могут быть представлены эквивалентными электрическими генераторами. Хорошо известно, что свойства любого электрического генератора определяются характером изменения регистрируемого сигнала во времени и его внутренним сопротивлением. Уровень потенциалов столь слабый, что для обеспечения возможности их регистрации или анализа необходим усилитель, который известен как усилитель биопотенциалов (УБП). Усилители биопотенциалов являются наиболее распространенными узлами современной диагностической аппаратуры, работающими, в отличие от большинства технических систем, в достаточно сложных условиях, связанных с особенностями биообъектов. Эти условия обусловлены тем, что в отводимом с помощью электродов сигнале вместе с полезной составляющей порядка 1мВ (и ниже) присутствуют инфранизкочастотная составляющая (до 300 мВ) и синусоидальная помеха (до 10-20 В) частотой 50 Гц от силовой и осветительной сети. Кроме того, источником шума может выступать сам усилитель как устройство, обладающее высокой чувствительностью и содержащее на входе активные элементы.
Борьба с помехами от силовой сети облегчается тем, что вследствие относительно хорошей электропроводности биологических структур потенциал помехи практически одинаков (синфазен) во всех точках объекта, и его можно подавить (значительно ослабить) путем дифференциального съема полезного сигнала. Задачи подавления других помех и обеспечение низкого уровня собственных шумов усилителя биопотенциалов являются наиболее специфическими и важными при проектировании УБП.
Решение отмеченных задач осложняется тем, что к входным зажимам УБП могут быть подключены дополнительные устройства, обеспечивающие его нормальное функционирование в различных вариантах его применения. В общем случае к этим устройствам относятся: кабель отведений, подавитель синфазных помех, переключатель отведений, калибратор амплитуды, детектор плохого контакта в системе отведений, буферные электродные усилители. При необходимости к входу УБП (например, для электрокардиографии) могут подключаться схема защиты от воздействия импульсов дефибриллятора или выделитель артефакта стимулирующего импульса и т.п. Поэтому важнейшим становится вопрос обеспечения согласования входной цепи УБП с источником возбуждения – эквивалентным генератором.
Отмеченные особенности ставят перед разработчиками устройств согласования биологического объекта и технических средств съема и регистрации биопотенциалов ряд проблем, которые будут рассмотрены в данном разделе.
