- •15.03.05 «Конструкторско-технологическое обеспечение машиностроительных производств»
- •Лекция №1 Основные понятия физико-механических методов обработки
- •Лекция №2 Основные понятия и классификация методов обработки. Разрушение – единая основа методов обработки
- •Лекция №3 Комбинированные операционные технологические процессы
- •Лекция №4 Методика построения комбинированных способов обработки
- •Лекция №5 Электроэрозионная обработка
- •Лекция №6 Электроконтактная обработка
- •Лекция №7 Электрохимическая обработка Физическая сущность
- •Технические подробности
- •Лекция №8 Анодно-механическая обработка
- •Технологические возможности
- •Лекция №9 Лазерная обработка
- •Лекция №9 Плазменная обработка
- •Лекция №10 Ультразвуковая обработка
- •Лекция №11 Гидроабразивная обработка Физическая сущность
- •Лекция №12 Магнитно-импульсная обработка
- •Лекция №13 Электровзрывная обработка
- •Лекция №14 Быстрое прототипирование
- •Способ стериолитографии (sl)
- •Способ избирательного спекания (sl s)
- •Способ изготовления слоистых объектов (lom)
- •Способ моделирования оплавлением (fdm)
- •5. Способ моделирования по принципу трехкоординатной (трехмерной) печати (3d Printinq, tdp)
- •Способ многофазного отвердения (mys)
- •Способ многоструйного моделирования (мум)
- •Способ формообразования с помощью лазерной инженерной сети (lens)
- •9. Способ трехкоординатной сварки (3dw)
- •10. Способ отвердения полимера при топографической интерференции
- •Методические указания к изучению курса физико-механические методы обработки
- •Физико-механические методы обработки
Лекция №8 Анодно-механическая обработка
Физическая сущность
Анодно-механическая обработка основана на комбинированном механическом, электроэрозионном и электрохимическом воздействии на материал снимаемого слоя. С увеличением удельной мощности подводимой в зону обработки, этот метод по характеру электрического воздействия приближается к электроэрозионному, а при снижении удельной мощности – к электрохимическому.
При всех способах анодно-абразивной обработки рабочие зазоры между токопроводящей связкой и деталью весьма малы (0,01…0,03 мм), что обеспечивает высокие плотности тока и интенсивное электрохимическое и электроэрозионное воздействие. В процессе обработки выгорает связка и выкрашиваются изношенные абразивные зерна; это способствует самозатачиванию кругов.
Преимущества АМО: высокая производительность на черновых режимах и высокое качество обработанной поверхности на чистовых режимах, возможность обрабатывать любые труднообрабатываемые металлы и сплавы, сравнительно легко удалять и утилизировать продукты обработки, варьировать режимы обработки в широких диапазонах.
К недостаткам метода можно отнести эксплуатационные неудобства использования жидкого стекла в качестве электролита, сравнительную сложность в эксплуатации и высокую стоимость оборудования.
Технические подробности
Обрабатываемое изделие (анод) и электрод-инструмент (катод) включают, как правило, в цепь постоянного тока низкого напряжения (до 30 в). Электролитом служит водный раствор силиката натрия Na2SiO3 (жидкого стекла), иногда с добавлением солей других кислот. В качестве материалов для электродов-инструментов применяют малоуглеродистые стали (08 кп, 10, 20 и др.). Под действием тока металл изделия растворяется и на его поверхности образуется пассивирующая плёнка. При увеличении давления инструмента на изделие плёнка разрывается и возникает электрический разряд. Его тепловое действие вызывает местное расплавление металла. Образующийся шлам выбрасывается движущимся инструментом. Изменяя электрический режим и давление, можно получить изделия с различной шероховатостью поверхности (до 9-го класса чистоты).
Съем металла при анодно-абразивной обработке обусловлен возникновением в зоне обработки следующих явлений:
а) анодное растворение материала, приводящее к снятию части металла срезаемого слоя и образованию пленки;
б) нагрев материала срезаемого слоя;
в) электроэрозионное разрушение;
г) механическое срезание металла абразивом, предварительно ослабленного анодным воздействием, тепловым и электроэрозионным процессами.
Работа по съёму металла при АМО осуществляется электрическим током в межэлектродном зазоре почти без силовой нагрузки на узлы анодно-механического станка в противоположность металлорежущим станкам, в которых эти узлы сильно нагружены. Интенсивность съёма металла практически не зависит от механических свойств обрабатываемых металлов и инструмента (твёрдости, вязкости, прочности), поэтому АМО целесообразно применять для изделий из высоколегированных сталей, твёрдых сплавов и т. п.
АМО различают по виду используемого для механического воздействия инструмента:
– инструменты из стали, чугуна, меди, латуни, графита. Обработка производится при напряжении 10…12 В с использованием в качестве электролита жидкого стекла (силиката натрия).
– связанный абразив (эта разновидность АМО называется анодно-абразивной); в качестве инструментов при этом используют абразивные или алмазные токопроводящие круги (рисунок 2.21, в) и абразивные бруски (рисунок 2.21, г). Разновидностью этого процесса является схема анодно-механического шлифования неметаллической лентой (рисунок 2.21, д);
– несвязанный абразив (эта разновидность АМО называется электро-химико-механическая). При этом методе обработки анодная пленка удаляется мелкодисперсным абразивом, находящимся во взвешенном состоянии в электролите.
