- •Введение
- •Характеристики бумажных фильтров
- •Меры предосторожности при выполнении лабораторных работ.
- •Методические указания к оформлению рабочего журнала
- •Часть I. Общая химия
- •Стеклянная посуда.
- •Мерная посуда.
- •4. Мытье посуды.
- •Тема: установление формулы кристаллогидрата
- •Тема: определение молярной массы диоксида углерода
- •Экспериментальная часть
- •Закономерности химических реакций
- •Экспериментальная часть
- •Вычисление теплоемкости калориметра
- •Экспериментальная часть
- •Дополнительные задания к лабораторной работе
- •Экспериментальная часть
- •Дополнительные задания к лабораторной работе
- •Глава третья. Растворы
- •Экспериментальная часть
- •Экспериментальная часть
- •Дополнительные задания к лабораторной работе
- •Экспериментальная часть
- •Дополнительные задания к лабораторной работе
- •Экспериментальная часть
- •Экспериментальная часть
- •Электрохимические процессы
- •Опыт 2. Реакции с участием характерных восстановителей.
- •Опыт 3. Окислительно - восстановительная двойственность.
- •Экспериментальная часть
- •Экспериментальная часть
- •Дополнительные задания к лабораторной работе
- •1. Коррозионные гальванические микроэлементы
- •2. Контактная коррозия
- •3. Защита от коррозии
- •Экспериментальная часть
- •Часть II неорганическая химия
- •Экспериментальная часть
- •В. Горение водорода.
Опыт 2. Реакции с участием характерных восстановителей.
В пробирку с раствором соли меди (II) поместите зачищенный наждачной бумагой железный гвоздик. Через несколько минут можно отметить вытеснение меди из раствора ее соли. Какой вывод можно сделать о сравнительной восстановительной активности железа и меди?
Напишите уравнение реакции.
Пользуясь таблицей 10 приложения, запишите значения величин стандартных электродных потенциалов для меди Ε0(Cu+2/Cu) и железа Ε0(Fe+2/Fe). Какие выводы можно сделать, исходя из положения металла в ряду стандартных электродных потенциалов металлов?
Опыт 3. Окислительно - восстановительная двойственность.
а) Налейте в пробирку раствор иодида калия, подкислите его серной кислотой и добавьте немного пероксида водорода. Реакция протекает по схеме:
KJ +H2O2 + H2SO4 → J2 + K2SO4 + …
Что наблюдается? Какую функцию выполняет пероксид водорода в этой реакции?
Напишите уравнение реакции, составив схему электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель.
в) Налейте в пробирку раствор перманганата калия, подкислите его серной кислотой и добавьте пероксид водорода. Как меняется цвет раствора?
Реакция протекает по схеме:
KMnO4 +H2O2 + H2SO4 → MnSO4 + K2SO4 + O2…
Напишите уравнение реакции, составив схему электронного баланса. Укажите процессы окисления и восстановления, окислитель и восстановитель. Какие свойства проявляет пероксид водорода в этой реакции?
Примечание: В ряде вышеприведенных окислительно-восстановительных реакций изменяется цвет раствора. По изменению цвета раствора можно судить о продуктах окисления-восстановления, если знать цвета соответствующих ионов.
Цвет катионов |
Цвет анионов
|
||
Cu2+ |
голубой |
CrO42- |
желтый |
Cr3+ |
зеленый |
Cr2O72- |
оранжевый |
Mn2+ |
бесцветный |
MnO4- |
фиолетовый |
|
|
MnO4-2 |
зеленый |
Опыт 5. Влияние характера среды на протекание окислительно -восстановительных реакций.
В 3 пробирки налейте раствор перманганата калия. В первую пробирку добавьте 2 капли разбавленной серной кислоты (кислая среда), во вторую пробирку добавьте 2 капли дистиллированной воды (нейтральная среда), в третью добавьте 2 капли разбавленного раствора гидроксида натрия (щелочная среда). В каждую из пробирок добаьте порошкообразный сульфит натрия. Отметьте наблюдаемые явления.
Обратите внимание, что перманганат ион (MnO4-1) - фиолетового цвета, манганат ион (MnO4-2) - зеленого, оксид марганца (IV) (MnO2) - бурого цвета, а ион Mn+2- бесцветный.
Напишите уравнения наблюдаемых реакций. Для всех уравнений составьте уравнения электронного баланса и подберите коэффициенты. К какому типу относятся данные окислительно-восстановительные реакции?
Опыт 6. Реакции внутримолекулярного окисления-восстановления. Термическое разложение бихромата аммония. (Опыт проводятся лаборантом)
Поместите небольшое количество кристаллического бихромата аммония в виде горки в фарфоровую чашку. Нагрейте в пламени газовой горелки стеклянную палочку и внести ее в середину подготовленной горки. Палочку подержите несколько секунд до начала реакции. Отметьте наблюдаемые явления. Учитывая, что при термическом разложении бихромата аммония образуется оксид хрома (III), азот и вода, с помощью метода электронного баланса составьте уравнение реакции. Укажите окислитель и восстановитель.
Опыт 7. Реакции диспропорционирования (самоокисления – самовосстановления)
Внесите в пробирку 5-7 капель бромной воды и добавьте к ней по каплям разбавленного раствора гидроксида натрия до обесцвечивания раствора. Запишите уравнение реакции, принимая во внимание, что продуктами являются бромид натрия, гипобромид натрия (NaBrO) и вода. Составьте уравнения электронного баланса,
укажите окислитель и восстановитель?
Дополнительные задания к лабораторной работе
1. Какие из приведенных ниже реакций являются окислительно-восстановительными?
2. Окисление или восстановление происходит при переходах:
3. Заполните приведенную ниже таблицу, используя следующие вещества:
Вещества, обладающие |
||
только окислительными свойствами |
только восстановительными свойствами |
двойственными окислительно- восстановительными свойствами |
|
|
|
4. Подберите коэффициенты и вычислите эквивалентную массу перманганата калия и нитрита натрия в следующих реакциях:
5. Подберите коэффициенты в уравнениях следующих межмолекулярных окислительно-восстановительных реакций:
6. Подберите коэффициенты в следующих уравнениях реакций диспропорционирования:
Лабораторная работа 14.
Тема: ГАЛЬВАНИЧЕСКИЕ ЭЛЕМЕНТЫ
Гальванический элемент – это химический источник электроэнергии, в котором энергия химической реакции преобразуется в электрическую энергию.
Гальванический элемент состоит из двух электродов – катода и анода, погруженных в растворы электролитов. Электролитами обычно являются соли тех металлов, из которых изготовлены электроды. Электрический контакт между растворами электролитов осуществляется с помощью пористой перегородки или электролитического «мостика», который изготовляется из U-образной стеклянной трубки, заполненной раствором электролита. Такой «мостик» проводит ток благодаря наличию ионов, но препятствует смешиванию электролитов.
Работа гальванического элемента основана на протекающей в нём окислительно-восстановительной реакции, причем процессы окисления и восстановления разделены, они протекают на разных электродах: окисление на аноде, а восстановление на катоде. Электроны движутся во внешней цепи от анода к катоду (от восстановителя к окислителю).
Главной характеристикой гальванического элемента является его электродвижущая сила (ЭДС). ЭДС – это разность потенциалов электродов в состоянии, когда сила тока равна нулю, т.е. когда между электродами и растворами солей устанавливается химическое равновесие:
Обычно для создания гальванического элемента берут два разных металла, расположенных далеко друг от друга в электрохимическом ряду активности металлов (ряду напряжений), чтобы получить наибольшую ЭДС.
Для примера рассмотрим магниево-серебряный гальванический элемент.
Найдем в ряду напряжений эти металлы и их стандартные электродные потенциалы:
Магний – более активный металл, он при работе гальванического элемента является анодом, то есть окисляется, а на серебряном электроде происходит восстановление катионов серебра из раствора, то есть серебряный электрод является катодом:
Электрохимическая схема гальванического элемента и его токообразующая реакция в ионном виде записываются так:
Уравнение токообразующей реакции в молекулярном виде показы-вает, что данный гальванический элемент производит электроэнергию за счёт окислительно-восстановительной реакции вытеснения менее ак-тивного металла более активным из раствора его соли:
Mg + 2AgNO3 = Mg(NO3)2 + 2Ag↓
Электродвижущая сила магниево-серебряного гальванического элемента при стандартных условиях рассчитывается по формуле:
При работе гальванического элемента в нестандартных условиях вначале необходимо вычислить электродные потенциалы катода и анода по уравнению Нернста:
где 0Me/Men+ – стандартный электродный потенциал; Т – температура; n – число электронов, переходящих от восстановителя к окислителю; [Men+] – молярная концентрация катионов металла в растворе электролита; R – молярная газовая постоянная; F – постоянная (число) Фарадея.
При стандартной температуре (298 К), но нестандартном значении концентрации катионов пользуются упрощенным вариантом этого уравнения:
