Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
143
Добавлен:
07.10.2014
Размер:
55.3 Кб
Скачать

29. БМ, ограниченные, ББ, отделимые от нуля величины. Их свойства.

Бесконечно малая величина — числовая функция или последовательность, которая стремится к нулю.

Бесконечно малая

Последовательность an называется бесконечно малой, если . Например, последовательность чисел an=1/n— бесконечно малая.

Функция называется бесконечно малой в окрестности точки x0, если .

Функция называется бесконечно малой на бесконечности, если либо .

Также бесконечно малой является функция, представляющая собой разность функции и её предела, то есть если , то f(x) − a = α(x), .

Бесконечно большая величина — числовая функция или последовательность, которая стремится к бесконечности определённого знака.

Бесконечно большая величина

Во всех приведённых ниже формулах бесконечность справа от равенства подразумевается определённого знака (либо «плюс», либо «минус»). То есть, например, функция , неограниченная с обеих сторон, не является бесконечно большой при .

Последовательность называется бесконечно большой, если .

Функция называется бесконечно большой в окрестности точки , если .

Функция называется бесконечно большой на бесконечности, если либо .

Свойства бесконечно малых и бесконечно больших

Сумма конечного числа бесконечно малых — бесконечно малая.

Произведение бесконечно малых — бесконечно малая.

Произведение бесконечно малой последовательности на ограниченную — бесконечно малая. Как следствие, произведение бесконечно малой на константу — бесконечно малая.

Если an — бесконечно малая последовательность, сохраняющая знак, то bn=1/ an — бесконечно большая последовательность.

ОГРАНИЧЕННЫЕ ФУНКЦИИ

Пусть задана функция y=f(x), определенная на некотором множестве D значений аргумента.

Функция y=f(x) называется ограниченной на множестве D, если существует положительное число М такое, что для всех значений x из рассматриваемого множества, выполняется неравенство |f(x)|≤M. Если же такого числа М не существует, то функция f(x) называется неограниченной на множестве D.

Функция y=f(x) называется ограниченной при x → a, если существует окрестность с центром в точке а, в которой функция ограничена.

Функция y=f(x) называется ограниченной при x→∞, если найдется такое число N>0, что при всех значениях х, удовлетворяющих неравенству |x|>N, функция f(x) ограничена.

Установим связь между ограниченной функцией и функцией, имеющей предел.

Теорема 1. Если и b – конечное число, то функция f(x) ограничена при x→a.

Доказательство. Т.к. , то при любом ε>0 найдется такое число δ>0, что при вех значениях х, удовлетворяющих неравенству |x-a|<δ, выполняется неравенство |f(x) –b|<ε. Воспользовавшись свойством модуля |f(x) – b|≥|f(x)| - |b|, последнее неравенство запишем в виде |f(x)|<|b|+ ε. Таким образом, если положить M=|b|+ ε, то при x→a |f(x)|<M.

Замечание. Из определения ограниченной функции следует, что если , то она является неограниченной. Однако обратное неверно: неограниченная функция может не быть бесконечно большой. Приведите пример.

Теорема 2. Если , то функция y=1/f(x) ограничена при x→a.

Доказательство. Из условия теоремы следует, что при произвольном ε>0 в некоторой окрестности точки a имеем |f(x) – b|<ε. Т.к. |f(x) – b|=|b – f(x)| ≥|b| - |f(x)|, то |b| - |f(x)|< ε. Следовательно, |f(x)|>|b| - ε >0. Поэтому и .