Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение.Раздел ТО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.24 Mб
Скачать

2.1.3. Мартенситное превращение (бездиффузионная перекристаллизация)

Если переохладить аустенит до температуры ниже начала мартенситного превращения Мн = 250 – 200 °С, произойдет бездиффузионное полиморфное превращение (γ-Fе – α-Fe), в результате которого в кристаллической решетке образовавшегося мартенсита углерода будет столько, сколько содержалось в аустените стали до начала превращения, так как оно происходит при температуре, при которой диффузия атомов углерода, железа и других элементов невозможна. Максимальная же растворимость углерода в равновесном альфа-железе обычно не превышает 0,02 %.

Следовательно, мартенсит – это пересыщенный твердый раствор внедрения углерода в альфа-железе, он метастабилен и при нагреве его выше температуры точки Мн распадается на ферритоцементитную смесь.

И збыточное количество углерода искажает решетку альфа-железа, и она становится тетрагональной. Этим объясняется увеличение твердости стали. Степень искаженности (тетрагональности) и твердость тем выше, чем больше в стали углерода (рис. 2.4).

Атомы железа

Атомы углерода

а б

Рис. 2.4. Тетрагональная кристаллическая решетка (а) и микроструктура (б) мартенсита (увеличение − 500-кратное)

Так как мартенситное превращение состоит в закономерной перестройке решетки, при которой атомы не обмениваются местами, а лишь смещаются на расстояния, не превышающие межатомные, и образовавшиеся кристаллы мартенсита когерентно связаны с кристаллами исходной фазы, сдвиг атомов образует игольчатый микрорельеф на поверхности металлического шлифа.

Поэтому мартенсит называют мелкоигольчатым, скрытокристаллическим, реечным и т. д. в зависимости от исходной структуры аустенита.

Для того чтобы образовались кристаллы мартенсита, необходимо не-прерывное понижение температуры. Таким образом, весь процесс образования мартенсита из аустенита протекает в интервале температуры от точки Мн до точки Мк (конца мартенситного превращения).

Значения температуры точек Мн и Мк зависят только от содержания углерода в стали. С повышением содержания углерода обе точки мартенситного превращения понижаются. Точка Мк при содержании углерода более 0,6 % находится в области отрицательных температур. Такую сталь следует охлаж-дать до температуры значительно ниже комнатной (обработка холодом). В структуре стали, содержащей более 0,6 % углерода и охлажденной только до комнатной температуры, будет сохраняться аустенит. Такой аустенит называется остаточным.

Мартенсит по сравнению с аустенитом имеет наибольший удельный объем. Это одна из основных причин возникновения при закалке значительных внутренних напряжений, вызывающих деформацию изделий или даже появление трещин. Мартенсит – основная структура закаленной стали, его твердость – 62 – 64 HRC.

2.1.4. Промежуточное (бейнитное) превращение

П

Рис. 2.5. Микроструктура бейнита (электронный микроскоп, увеличение – 15000-кратное)

ромежуточное (бейнитное) превращение происходит между перлитным и мартенситным превращениями в интервале температуры 550 °С – Мн. Это превращение сочетает в себе диффузионное перераспределение углерода в аустените между продуктами его распада и бездиффузионное (сдвиговое) мартенситное превращение при перестройке кристаллической решетки γ-Fе→α-Fе. Бейнит (игольчатый троос-тит) – смесь неравновесного высокоуглеродистого феррита и цементита (рис. 2.5). Его твердость ≈ 50 HRC.