Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Spravochny_material_algebra_dlya_OGE-1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.31 Mб
Скачать

Справочный материал алгебра

СЛОЖЕНИЕ И ВЫЧИТАНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ  Сложение и вычитание алгебраических дробей с разными знаменателями выполняют по тому же алгоритму, что используется для сложения и вычитания обыкновенных дробей с разными знаменателями: сначала приводят дроби к общему знаменателю с помощью соответствующих дополнительных множителей, а затем складывают или вычитают полученные дроби с одинаковыми знаменателями по правилу из § 3. Можно сформулировать алгоритм, охватывающий любые случаи сложения (вычитания) алгебраических дробей.

Алгоритм сложения (вычитания) алгебраических дробей

Пример 1. Выполнить действия:

Решение. Для каждой пары заданных здесь алгебраических дробей общий знаменатель был найден выше, в примере из § 2. Опираясь на указанный пример, получаем:

Самое трудное в приведенном алгоритме — это, конечно, первый шаг: отыскание общего знаменателя и приведение дробей к общему знаменателю. В примере 1 вы этой трудности, может быть, не ощутили, поскольку мы воспользовались готовыми результатами из § 2.

Чтобы выработать правило отыскания общего знаменателя, проанализируем пример 1.  Для дробей   общий знаменатель есть число 15  оно делится и на 3 и на 5, является их общим кратным (даже наименьшим общим кратным).  Для дробей —  общим знаменателем является одночлен 12b3. Он делится и на 4b2 и на 6b3 , т. е. на оба одночлена, служащие знаменателями дробей.

Обратите внимание: число 12 — наименьшее общее кратное чисел 4 и 6. Переменная b входит в знаменатель первой дроби с показателем 2, в знаменатель  второй дроби — с показателем 3. Это наибольшее значение показателя 3 фигурирует в общем знаменателе.  Для дробей

общим знаменателем служит произведение (х + у)(х - у) — оно делится и на знаменатель х + у и на знаменатель х-у.

При отыскании общего знаменателя приходится, естественно, все заданные знаменатели разлагать на множители (если это не было подготовлено в условии). А далее следует провести работу по этапам: найти наименьшее общее кратное для числовых коэффициентов (речь идет о целочисленных коэффициентах), определить для каждого несколько раз встречающегося буквенного множителя наибольший показатель степени, собрать все это в одно произведение.

Теперь можно оформить соответствующий алгоритм. Алгоритм отыскания общего знаменателя для нескольких алгебраических дробей

Прежде чем двигаться дальше, попробуйте применить этот алгоритм к обоснованию поиска общего знаменателя для алгебраических дробей из примера 1.  Замечание. На самом деле общих знаменателей для двух алгебраических дробей можно найти сколько угодно. Например, для дробей   общим  знаменателем может быть и число 30, и число 60, и даже одночлен 15а2Ь. Дело в том, что и 30, и 60, и 15а2b можно разделить как на 3, так и на 5. Для  дробей  общим знаменателем, кроме найденного выше одночлена 12b , может быть и 24b3 и 48а2b4. Чем же одночлен 12b3 лучше, чем 24b3, чем 48а2b4? Он проще (по виду). Его иногда называют даже не общим знаменателем, а наименьшим общим знаменателем. Таким образом, приведенный алгоритм — это алгоритм  отыскания самого простого из общих знаменателей нескольких алгебраических дробей, алгоритм отыскания наименьшего общего знаменателя.

Снова вернемся к примеру 1, а. Чтобы сложить алгебраические дроби   , надо было не только найти общий знаменатель (число 15), но и отыскать для каждой из дробей дополнительные множители, которые позволили бы привести дроби к общему знаменателю. Для дроби   таким дополнительным мно-  жителем служит число 5 (числитель и знаменатель этой дроби умножили дополнительно на 5), для дроби   число 3 (числитель и знаменатель этой дроби умножили дополнительно на 3).

Дополнительный множитель есть частное от деления общего знаменателя на знаменатель данной дроби.  Обычно используют следующую запись:

Снова вернемся к примеру 1,6. Общим знаменателем для дробей   является одночлен 12b3. Дополнительный множитель для первой дроби равен Зb (поскольку 12b3 : 4b2 = ЗЬ), для второй дроби он равен 2 (поскольку 12b3 : 6b3 = 2). Значит, решение примера 1,6 можно оформить так:

Выше был сформулирован алгоритм отыскания общего знаменателя для нескольких алгебраических дробей. Но опыт показывает, что этот алгоритм не всегда бывает понятен учащимся, поэтому мы дадим несколько видоизмененную формулировку.

Правило приведения алгебраических дробей к общему знаменателю

Пример 2. Упростить выражение

Решение.  Первый этап. Найдем общий знаменатель и дополнительные множители.

Имеем  4а2 - 1 = (2а - 1) (2а + 1),  2а2 + а = а(2а + 1).  Первый знаменатель берем целиком, а из второго — добавляем множитель а, которого нет в первом знаменателе. Получим общий знаменатель

a(2a - 1) (2a +1).

Удобно расположить записи в виде таблицы:

Второй этап. Выполним преобразования:

При наличии некоторого опыта первый этап можно не выделять, выполняя его одновременно со вторым этапом.

В заключение рассмотрим более сложный пример (для желающих).

Пример 3. Упростить выражение

Решение.  Первый этап.  Разложим все знаменатели на множители:

1) 2а4 + 4а3b + 2a2b2 = 2а2 (а2 + 2аb + b2) = 2а2 (а + b)2;

2) 3ab2 - За3 = За (b2 - а2) = За (b - а) (b + а);

3) 6а4-6а3b = 6а3(а- b).

Первый знаменатель берем целиком, из второго возьмем недостающие множители 3 и b - а (или a — b), из третьего — недостающий множитель а (поскольку третий знаменатель содержит множитель а3).

Алгебраические дроби

Заметим, что если у дополнительного множителя появляется знак «-», то его обычно ставят перед всей дробью, т. е. перед второй дробью придется поменять знак.

Второй этап. Выполним преобразования:

Отметим, что замена выражения, данного в примере 3, той алгебраической дробью, которая получилась в результате, есть тождественное преобразование при допустимых значениях переменных. В данном случае допустимыми являются любые значения переменных а и Ь, кроме a = 0, a = b, a = - b (в этих  случаях знаменатели обращаются в нуль). 

Алгоритм решения неравенств методом интервалов.

Прежде чем применить метод интервалов для решении неравенства, необходимо все дроби привести к наименьшему общему знаменателю и все слагаемые перенести в левую часть, чтобы справа остался нуль. Для начала рассмотрим алгоритм решения неравенств вида

   

1. Приравниваем к нулю левую часть:

   

(Таким образом мы находим нули функции

   

а также ее область определения).

2.Дробь равна нулю, если числитель равен нулю, а знаменатель отличен от нуля, поэтому это уравнение равносильно системе:

   

   

3. Полученные точки отмечаем на числовой прямой с учетом области определения функции. Точки разбивают числовую прямую на промежутки, в каждом из которых рассматриваемая функция имеет определенный знак. Выбираем любое число из любого промежутка (удобнее всего брать нуль, если он не входит в отмеченные точки), и подставляем это число в последнее неравенство (то есть в упрощенное неравенство, в котором все слагаемые стоят в левой части и дроби приведены к наименьшему общему знаменателю). В результате определяем знак на выбранном промежутке. Остальные знаки расставляем в шахматном порядке.

4. «Петля»

1)Если есть кратный корень четной степени, то в нем — «петля»:

   

2)Если дискриминант равен нулю, то в соответствующем корне x=-b/2a — «петля».

3) Если один и тот же корень встречается четное число раз, то в нем — «петля»:

   

так как корень x2 встречается четное количество раз (два раза).

5. Выбираем промежутки с нужным знаком: если в неравенстве знак > или ≥, берем промежутки с «+»; если < или ≤ — с «-«. Точки, в которых знаменатель обращается в нуль, всегда выколотые.  В остальных случаях запомнить, выколотая точка или закрашенная, можно с помощью ассоциации.

Замечание

Отдельно стоящие закрашенные точки включаем в решение:

   

(Знаки в «петлях» — «виртуальные». В этих точках функция обращается нуль либо не определена. «Петля» служит только для сохранения  порядка чередования знаков).

Задача. Решите неравенство:

(x + 9)(x − 3)(1 − x) < 0

Шаг 1: приравниваем левую часть к нулю:

(x + 9)(x − 3)(1 − x) = 0; x + 9 = 0 ⇒ x = −9; x − 3 = 0 ⇒ x = 3; 1 − x = 0 ⇒ x = 1.

Помните: произведение равно нулю, когда хотя бы один из множителей равен нулю. Именно поэтому мы вправе приравнять к нулю каждую отдельную скобку.

Шаг 2: отмечаем все корни на координатной прямой:

Шаг 3: выясняем знак самого правого промежутка. Берем любое число, которое больше, чем x = 1. Например, можно взять x = 10. Имеем:

f (x) = (x + 9)(x − 3)(1 − x); x = 10; f (10) = (10 + 9)(10 − 3)(1 − 10) = 19 · 7 · (−9) = − 1197; f (10) = −1197 < 0.

Шаг 4: расставляем остальные знаки. Помним, что при переходе через каждый корень знак меняется. В итоге наша картинка будет выглядеть следующим образом:

Вот и все. Осталось лишь выписать ответ. Взгляните еще раз на исходное неравенство:

(x + 9)(x − 3)(1 − x) < 0

Это неравенство вида f (x) < 0, т.е. нас интересуют интервалы, отмеченные знаком минус. А именно:

x ∈ (−9; 1) ∪ (3; +∞)Это и есть ответ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]