- •Лекция 1
- •Лекция 2
- •Лекция 3
- •3.1 Интерполирование функций
- •Тогда формула для погрешности
- •3.2 Сплайн - интерполяция
- •Лекция 4
- •4.1 Численное интегрирование в теплотехнических расчетах
- •4.2 Методы численного интегрирования
- •4.2.1.Формула прямоугольников
- •4.2.2 Метод трапеций
- •Лекция 5
- •5.2 Метод половинного деления (дихотомия)
- •Алгоритм метода дихотомии.
- •5.3 Метод хорд
- •5.4 Метод Ньютона
- •5.5 Метод секущих
- •Лекция 6 Тема: Численные методы решения систем алгебраических уравнений
- •6.1 Решение систем линейных и нелинейных алгебраических уравнений
- •6.2 Метод Гаусса с выбором главного элемента (метод последовательного исключения неизвестных)
- •6.3 Метод Зейделя
- •6.4 Сравнение метода Гаусса и Зейделя для решения систем линейных алгебраических уравнений
- •Лекция 7
- •7.1 Задача Коши для обыкновенного дифференциального уравнения первого порядка
- •7.2.2 Методы Рунге-Кутты
- •Так для уравнения второго порядка метод Рунге-Кутты имеет следующий алгоритм. Исходное уравнение задачи Коши
- •7.3 Многошаговые методы решения задачи Коши
- •Лекция 8
- •8.1 Численные методы решения задач тепломассообмена и гидродинамики
- •8.2 Метод конечных разностей: основные понятия
- •Лекция 9
- •9.1 Задачи оптимизации в теплоэнергетике и теплотехнике
- •9.2 Классификация методов решения задач оптимизации
- •9.2.1 Общая характеристика методов нулевого порядка
- •9.3 Метод прямого спуска (Хука-Дживса)
- •Список литературы
Лекция 1
Тема: Введение. Компьютерные технологии в моделировании теплоэнергетических систем, процессов и установок. Модели и виды моделирования.
План: Введение. Цели и задачи курса. Политика курса. Состояние и перспективы использования компьютерных технологий в моделировании теплоэнергетических систем, процессов и установок. Классификация моделей и видов моделирования.
Курс «Компьютерные технологии в теплоэнергетических расчетах» является дисциплиной по выбору для студентов бакалавриата и включен в учебные планы в качестве базовой дисциплины.
Цель курса – формирование знаний, умений и навыков применения компьютерных технологий для расчета объектов теплоэнергетики и теплотехнологии.
Задачи курса: овладение элементами численных методов; приемами алгоритмизации; закрепление навыков, приобретенных в курсе «Информатика», использования языков программирования; проведение вычислительного эксперимента; использование компьютерных технологий и пакетов прикладных программ для исследования процессов, установок и систем теплоэнергетики и теплотехнологии.
Политика курса дана в силлабусе.
Дисциплина «Компьютерные технологии в теплоэнергетических расчетах» базируется на знаниях и умениях, приобретенных студентами при изучении курсов «Математика», «Информатика», «Физика», «Химия», «Материаловедение», «Техническая термодинамика», «Механика жидкости и газа», «Тепломассообмен». Знания, умения и навыки, полученные студентами, используются при изучении специальных дисциплин, в частности, курса «Методы моделирования и оптимизации теплоэнергетических и теплотехнологических процессов и установок», выполнении курсовых, дипломной и научно-исследовательских работ.
В результате изучения дисциплины бакалавры должны:
иметь представление о возможностях компьютерных технологий при решении прикладных задач теплоэнергетики и теплотехники;
владеть:
способами алгоритмизации и программирования, хранения, обработки и представления информации;
методами:
интерполирования функций;
численного интегрирования;
решения трансцендентных уравнений, систем алгебраических уравнений, обыкновенных дифференциальных уравнений;
решения задач оптимизации;
решения задач стационарной и нестационарной теплопроводности, конвективного теплообмена и т.д.;
- уметь:
выбирать эффективный численный метод для решения конкретной задачи, оценивать его точность и надежность;
использовать:
языки высокого уровня для составления программ расчета;
текстовые и графические редакторы, мультимедийные средства и компьютерную сеть;
готовые пакеты прикладных программ для выполнения теплоэнергетических расчетов;
автоматизированные экзаменационно – обучающие компьютерные системы для самообучения и самоконтроля;
разрабатывать и использовать информационно-справочные системы и базы данных для обеспечения моделирования теплоэнергетических объектов.
- быть компетентным в выборе:
- численных методов и их программного обеспечения для решения профессиональных задач;
- средств их компьютерной реализации.
Для современного этапа развития теплоэнергетики характерны две тенденции. Первая - увеличение разнообразия условий функционирования теплоэнергетических установок, вызванное расширением диапазона видов, качества и стоимости сжигаемого топлива, типов применяемых систем охлаждения и режимов использования. Вторая – увеличение числа типов и модификаций, используемых и разрабатываемых теплоэнергетических установок, что связано с развитием атомных энергоустановок различных типов, созданием высокоманевренных модификаций паротурбинных, газотурбинных и парогазовых установок.
Эти тенденции приводят к возрастанию значимости технико-экономических исследований по определению оптимальных значений параметров, рационального вида технологической схемы и профилей оборудования энергоустановок различных типов. В настоящее время решение таких задач немыслимо без широкого использования компьютерных технологий и методов моделирования.
Специалист в области теплоэнергетики должен иметь достаточную подготовку в области информационных технологий - использовать программные средства общего пользования: Microsoft Office, Corel Draw, Adobe Photoshop и т.д., специализированные программные средства: AutoCAD, MathCAD, Mathlab, уметь работать в сети, с электронной почтой, в Интернете, знать языки высокого уровня, составлять алгоритмы и программы для решения профессиональных задач.
Трудно назвать отрасль знаний, указать сферы человеческой деятельности, где бы ни применялись и куда бы ни внедрялись в настоящее время методы моделирования.
Использование методов моделирования обусловлено:
общей тенденцией расширения и углубления исследования процессов в реальном физическом мире;
длительностью ряда процессов (например, экологических);
практической невозможностью получать необходимую информацию путем исследования объекта-оригинала (микро- и макрообъекты);
неполнотой данных о реальных процессах и высокой стоимостью исследований объекта-оригинала, когда с экономических позиций наиболее приемлемо перенести их на объект-модель;
наличием критических режимов функционирования объекта, когда исследования в некоторых областях изменения экзогенных параметров являются попросту опасными, а результаты исследования не поддаются прогнозу;
отсутствием условий, а иногда и недостаточной квалификацией персонала для исследования объекта-оригинала;
необходимостью большого числа экспериментов;
уникальностью объекта исследования;
отсутствием объекта-оригинала и т.д.
Моделирование – метод исследования объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (инженерных устройств, физико-химических процессов) и конструируемых объектов для определения либо улучшения их характеристик, рационализации способов их построения, управления ими и т.п.
Модель – аналог (схема, структура, знаковая система) определенного фрагмента природной или социальной реальности – оригинала модели. Такой аналог служит для: хранения и расширения знаний об оригинале, конструирования оригинала, преобразования или управления им.
Формы моделирования разнообразны и зависят от используемых моделей и сферы применения моделирования.
Предметным называется моделирование, в ходе которого исследование ведется на модели, воспроизводящей определенные геометрические, физические, динамические либо функциональные характеристики объекта моделирования – оригинала. К предметному относится аналоговое моделирование, когда оригинал и модель описываются едиными математическими соотношениями.
При знаковом моделировании моделями служат чертежи, схемы, формулы.
Важнейшим видом знакового моделирования является математическое моделирование.
Моделирование применяется вместе с другими общенаучными методами исследования: экспериментом, абстрагированием, идеализацией и т.д.
Модели и виды моделирования можно разделить на три группы:
первая – определяется характером функционирования объекта;
вторая – средствами моделирования;
третья (относится к математическим моделям) – типом математического описания.
Рисунок 1.1 - Классификация видов моделирования
Поскольку все процессы могут протекать при наличии или отсутствии случайных воздействий, их моделирование носит детерминированный или стохастический характер. Динамическое или статическое моделирование определяется стационарностью и нестационарностью процессов в исследуемом объекте. Периодичность функционирования объекта-оригинала отражается дискретным, дискретно-непрерывным и непрерывным моделированием.
Наглядное моделирование связано с описанием модели на основе представлений, гипотез, выдвигаемых человеком, и применения аналогий различных уровней.
Символьное моделирование отображает свойства объекта-оригинала определенной заранее отработанной системой символов.
Модели на микроуровне обычно формализуют объекты с распределенными параметрами и описываются системами дифференциальных уравнений в частных производных.
Модели на макроуровне обычно представляются обыкновенными дифференциальными уравнениями (задача Коши и краевая задача) и алгебраическими уравнениями. Они используются для моделирования процессов с сосредоточенными параметрами в стационарной и нестационарной постановках.
Модели на метауровне создаются для сложных технических объектов и используются в основном при моделировании систем массового обслуживания и систем автоматического управления.
Имитационное моделирование заключается в создании модели-имитатора работы сложных (чаще при наличии стохастических факторов) систем и процессов при неполных знаниях о ряде процессов в моделируемых объектах. Они не позволяют в отличие от аналитических моделей формировать решение в обычном виде, но за счет перебора вариантов позволяют выбрать приемлемое решение.
Комбинированное моделирование состоит из аналитического моделирования, включая элементы имитационного моделирования, и наоборот.
Реальное моделирование представляет разработку физических полноразмерных или масштабных моделей агрегатов (процессов).
В 2007г. кафедрами ТЭУ и ПТЭ приобретен программный продукт МЭИ «ТВТ Shell» и материалы Электронной Энциклопедии Энергетики.
Электронная Энциклопедия Энергетики включает следующие разделы: общие вопросы теплоэнергетики; теоретические основы теплотехники; тепломеханическое оборудование ТЭС; теплообменное оборудование ТЭС; водоподготовка; водно-химический режим; КИП и автоматика; энергосбережение, экология и охрана труда; топливоиспользование и технология масел; эксплуатация оборудования; тепловые сети. Кроме того, энциклопедия содержит виртуальные лабораторные работы, программы тестирования и тренажеры.
Достаточно большое количество материалов по применению компьютерных технологий в теплоэнергетике и теплотехнике представлено в настоящее время в Интернете. Это – интерактивные справочники по теплоэнергетике и теплотехнике, каталоги энергетического оборудования, нормативно-правовая документация (ГОСТ, СНиП, СН, СО, РД и т.п.), типовые энергетические характеристики и их расчеты, тренажеры и программно-технические средства для производственного персонала энергетических предприятий, таблицы теплофизических свойств энергоносителей и т.д.
Литература: [1],[5],[8],[11],[13],[18].
