- •Эфхмо тхом Лекция 11
- •5.1.4. Химическое оксидирование алюминия и его сплавов
- •5.2. Оксидные покрытия чёрных, цветных и благородных металлов
- •5.2.1. Оксидные покрытия стали
- •5.2.2. Оксидные покрытия меди и её сплавов
- •5.2.3. Оксидные покрытия хрома и титана
- •5.2.4. Оксидные покрытия серебра
- •5.2.5. Пассивирование электролитических покрытий и металлов
- •5.3. Фосфатные покрытия
- •5.3.1. Фосфатные покрытия чёрных металлов
- •5.3.2. Фосфатные покрытия цветных металлов
Эфхмо тхом Лекция 11
5.1.4. Химическое оксидирование алюминия и его сплавов
Оксидные покрытия, получаемые электрохимическим и химическим способом, существенно отличаются по составу, структуре и толщине. Но в механизме их образования существуют общие закономерности. Растворение плёнки в обоих случаях является результатом её взаимодействия с раствором. При химическом оксидировании в растворе хроматов под их влиянием на поверхности формируется тонкая, беспористая плёнка. Увеличение её толщины возможно лишь при введении в раствор активаторов – ионов F– или SiF62–. Активаторы нарушают сплошность плёнки, дают возможность проникновения раствору к поверхности и роста оксидного покрытия. Скорость роста плёнки при химическом оксидировании ниже, чем при электрохимическом, поэтому плёнки получаются на порядок меньшей толщины.
Для химического оксидирования алюминия и его сплавов используют следующие электролиты.
1) Щёлочно-хроматные. В них формируются плёнки толщиной не более 2 мкм, низкой механической прочности. Их применяют в качестве грунта под лакокрасочные покрытия.
2) Фосфатно-хроматно-фторидные. Толщина формируемых в них плёнок 3–4 мкм, они обладают лучшими свойствами. Поэтому эти плёнки можно использовать в качестве антикоррозионных покрытий.
3) Хроматно-фторидные. Формируемые в них плёнки обладают низким электросопротивлением.
Окраска плёнок зависит от их толщины, состава раствора, легирующих компонентов обрабатываемого сплава. Включение соединений шестивалентного хрома придаёт золотисто-жёлтую окраску, трёхвалентного хрома – зеленоватый оттенок. Слабо жёлтая окраска с зеленоватым оттенком характерна для плёнок малой толщины.
Составы используемых растворов, г/л:
1) 40–60 Na2CO3, 2–3 NaOH, 10–20 Na2CrO3. Температура раствора 80–100°С, продолжительность обработки 5-20 мин. Отклонение от оптимальной температуры ухудшает качество покрытия.
2) 3–4 CrO3, 3–4 Na2SiF6. Температура раствора 15–25°С, продолжительность обработки 5 мин. При выработке раствора температура повышается до 80°С, продолжительность обработки увеличивается до 20 мин.
3) 5–8 CrO3, 40–50 Н3PO4, 3–5 NaF. По мере выработки раствора продолжительность обработки увеличивают от 5 до 20 мин.
Недоброкачественные покрытия удаляют обработкой их в течение 5–10 мин при 90–95°С в растворе, содержащем 150–180 г/л CrO3.
5.2. Оксидные покрытия чёрных, цветных и благородных металлов
5.2.1. Оксидные покрытия стали
Оксидирование чёрных металлов называется воронением. С давних пор применялось химическое оксидирование – щёлочное и кислотное. Электрохимическим способом получают более толстые и качественные покрытия, но этот способ менее распространён по сравнению с химическим.
При щёлочном оксидировании в горячих растворах гидроксида натрия (при 140–160°С) на углеродистой и низколегированной стали формируются оксидные плёнки толщиной 1–3 мкм, чёрного, с синеватым оттенком цвета; на высоколегированных сталях – от тёмно серого до тёмно-коричневого цвета. Они состоят в основном из оксида железа Fe2O3 и примеси оксидов легирующих компонентов обрабатываемого сплава.
Кислотное оксидирование проводят в растворах фосфорной кислоты или монофосфатов железа, цинка с добавками окислителей – нитратов бария, калия, пероксида марганца. Оно занимает промежуточное положение между процессами оксидирования и фосфатирования. Получаемые плёнки достигают толщины 5–6 мкм и состоят в основном из труднорастворимых фосфатов. Их защитные свойства лучше, чем у плёнок, полученных щелочным оксидированием. Недостаток процесса – малая стабильность растворов по сравнению со щелочными.
Перед нанесением оксидно-фосфатных покрытий проводят активирование деталей в 5–10%-ном растворе фосфорной кислоты.
Независимо от способа получения оксидные и оксидно-фосфатные покрытия после промывки для улучшения защитных свойств подвергают химической обработке в растворах хроматов, пропитке минеральным маслом, ингибированными смазками или гидрофобизации.
