- •Лекция №1
- •Понятие об информационном обществе.
- •Информатизация общества.
- •Информационная культура.
- •4. Информатика – предмет и задачи.
- •Лекция №2
- •1. Понятие информации
- •2. Виды информации
- •Лекция №3
- •Классификация эвм по размерам и функциональным возможностям.
- •Принципы работы компьютера. (в общих чертах).
- •Архитектура эвм.
- •Персональный компьютер. Основные блоки пк
- •Микропроцессор
- •Внешние носители информации
- •1. Накопители на гибких магнитных дисках
- •2. Накопители на жестких магнитных дисках
- •3. Накопители на компакт-дисках
- •4. Флеш-память
- •5. Накопители на магнитной ленте (стримеры)
- •Внешние устройства компьютера Аудиоадаптер
- •Midi –клавиатуры
- •Видеоадаптер
- •Мониторы
- •1. Монитор на базе электронно-лучевой трубки
- •2. Жидкокристаллические мониторы
- •Технические характеристики
- •3. Плазменные мониторы
- •Технические характеристики
- •Плазменные мониторы
- •Преимущества и недостатки
- •Oled – мониторы (Светодиодный графический экран)
- •Преимущества и недостатки
- •Применение
- •Модем и факс-модем
- •Манипуляторы
- •Лекция. Тема: Классификация программного обеспечения.
- •Системное программное обеспечение
- •Структура системного программного обеспечения
- •Операционная система
- •Прикладные программы
- •Коммерческие разновидности программ
- •Алгоритмы и алгоритмизация.
- •Программирование
Преимущества и недостатки
Преимущества:
высокая контрастность;
глубина цветов;
Недостатки:
недолговечность(в среднем 30000 часов, выгорание дисплея, как следствие высоких рабочих температур, особенно видна пикселизация при отклонении по вертикали угла обзора, что также происходит за счет выделения большого количества тепла.)
Oled – мониторы (Светодиодный графический экран)
Светодиодный экран (LED screen, LED display) — устройство отображения и передачи визуальной информации, в котором каждой точкой, пикселем (pix) является один или несколько полупроводниковых светодиодов. Аббревиатура LED означает «светодиод» (Light Emitting Diode).
Преимущества и недостатки
В отличие от других технологий (напр., Блинкерное табло), светодиодные экраны обладают некоторыми преимуществами:
Высокая яркость.
Возможность сборки экрана больших размеров (до сотен метров в ширину и высоту).
Произвольное соотношение высота/ширина.
Надёжность (повреждение части экрана не ведёт к его неработоспособности в целом).
К неоспоримым преимуществам можно отнести возможность уличного круглогодичного использования таких видеоэкранов.
К недостаткам можно отнести:
Довольно большой размер зерна у экрана.
Зачастую весьма низкое разрешение экрана.
Сложность самостоятельной сборки.
Высокая стоимость.
Применение
Светодиодные экраны получают всё большее распространение — всё чаще используются в целях рекламы на улицах крупных городов или в качестве информационных экранов и дорожных знаков. Эксперты развития рынка рекламы сходятся в едином мнении о том, что с каждым годом доля светодиодных информационных экранов на рынке рекламных технологий будет только возрастать. Действительно, полноцветные светодинамические табло сочетают в себе все основные преимущества существующих визуальных рекламных технологий. Единственным их недостатком может считаться довольно высокая стоимость по сравнению с другими технологиями рекламы.
LED-телевизоры
Возможно, первый настоящий светодиодный экран для телевизора был разработан, продемонстрирован и документально описан Дж. П.Митчеллом в 1977 году. Модель 1977 года была монохроматической и не могла конкурировать с цветными телевизорами того времени.
Лишь после создания достаточно ярких цветных светодиодов появились первые цветные LED-телевизоры. Самый большой в мире светодиодный телевизор находится на стадионе Ковбойз в Арлигтоне, штат Техас, США. Его размеры 49 × 22 метров, плошадь 1070 квадратных метров. (Существуют светодиодные дисплеи и гораздо больших размеров, но они не предназначены для телевидения.)
Главный недостаток телевизоров на полупроводниковых светодиодах — большой размер. Дисплей состоит из сотен тысяч светодиодов, и пока не удалось изготовить полупроводниковый светодиод микроскопических размеров, пригодный для телевидения и имеющий приемлемую цену.
В XXI веке получили распространение дисплеи на органических светодиодах (OLED), но они пока имеют противоположный недостаток — слишком малый размер.
В торговле нередко "LED-телевизорами" (LED TV) называют телевизоры, имеющие ЖК-экран со светодиодной подсветкой. Несмотря на схожее название, к описываемым в данной статье светодиодным экранам они отношения не имеют.
Принтеры
Принтер — печатающее устройство. Осуществляет вывод из компьютера закодированной информации в виде печатных копий текста или графики. |
Различают три основных вида принтеров: матричные, лазерные и струйные.
Матричные принтеры используют комбинации маленьких штырьков, которые бьют по красящей ленте, благодаря чему на бумаге остаётся отпечаток символа. Каждый символ, печатаемый на принтере, формируется из набора 9, 18 или 24 игл, сформированных в виде вертикальной колонки. Недостатками этих недорогих принтеров являются их шумная работа и невысокое качество печати.
Лазерные принтеры работают примерно так же, как ксероксы. Компьютер формирует в своей памяти "образ" страницы текста и передает его принтеру. Информация о странице проецируется с помощью лазерного луча на вращающийся барабан со светочувствительным покрытием, меняющим электрические свойства в зависимости от освещённости.
После засветки на барабан, находящийся под электрическим напряжением, наносится красящий порошок — тонер, частицы которого налипают на засвеченные участки поверхности барабана. Принтер с помощью специального горячего валика протягивает бумагу под барабаном; тонер переносится на бумагу и "вплавляется" в неё, оставляя стойкое высококачественное изображение. Цветные лазерные принтеры пока очень дороги.
Струйные принтеры генерируют символы в виде последовательности чернильных точек. Печатающая головка принтера имеет крошечные сопла, через которые на страницу выбрызгиваются быстросохнущие чернила. Эти принтеры требовательны к качеству бумаги. Цветные струйные принтеры создают цвета, комбинируя чернила четырех основных цветов — ярко-голубого, пурпурного, желтого и черного.
3D-печать может осуществляться разными способами и с использованием различных материалов, но в основе любого из них лежит принцип послойного создания (выращивания) твёрдого объекта.
Технологии, применяемые для создания слоев[1][2][3]:
Лазерная:
Лазерная стереолитография — ультрафиолетовый лазер постепенно, пиксель за пикселем, засвечивает жидкий фотополимер, либо фотополимер засвечивается ультрафиолетовой лампой через фотошаблон, меняющийся с новым слоем. При этом жидкий полимер затвердевает и превращается в достаточно прочный пластик.
Лазерное сплавление (англ. melting) — при этом лазер сплавляет порошок из металла или пластика, слой за слоем, в контур будущей детали.
Ламинирование — деталь создаётся из большого количества слоёв рабочего материала, которые постепенно накладываются друг на друга и склеиваются, при этом лазер вырезает в каждом контур сечения будущей детали.
Струйная:
Застывание материала при охлаждении — раздаточная головка выдавливает на охлаждаемую платформу-основу капли разогретого термопластика. Капли быстро застывают и слипаются друг с другом, формируя слои будущего объекта.
Полимеризация фотополимерного пластика под действием ультрафиолетовой лампы — способ похож на предыдущий, но пластик твердеет под действием ультрафиолета.
Склеивание или спекание порошкообразного материала — похоже на лазерное спекание, только порошковая основа (подчас на основе измельчённой бумаги или целлюлозы) склеивается жидким (иногда клеющим) веществом, поступающим из струйной головки. При этом можно воспроизвести окраску детали, используя вещества различных цветов. Существуют образцы 3D-принтеров, использующих головки струйных принтеров.
Густые керамические смеси тоже применяются в качестве самоотверждаемого материала для 3D-печати крупных архитектурных моделей[4].
Биопринтеры — ранние экспериментальные установки, в которых печать 3D-структуры будущего объекта (органа для пересадки) производится каплями, содержащими живые клетки[5]. Далее деление, рост и модификации клеток обеспечивает окончательное формирование объекта.
Лазерная стереолитография (англ. laser stereolithography, SLA) — объект формируется из специального жидкого фотополимера, затвердевающего под действием лазерного излучения (или излучения ртутных ламп). При этом лазерное излучение формирует на поверхности текущий слой разрабатываемого объекта, после чего объект погружается вфотополимер на толщину одного слоя, чтобы лазер мог приступить к формированию следующего слоя[1][2][3].
Селективное лазерное спекание (англ. selective laser sintering, SLS) (также англ. Direct metal laser sintering — DMLS) — объект формируется из плавкого порошкового материала (пластик, металл) путём его плавления под действием лазерного излучения[1][2][3]. Порошкообразный материал наносится на платформу тонким равномерным слоем (обычно специальным выравнивающим валиком), после чего лазерное излучение формирует на поверхности текущий слой разрабатываемого объекта. Затем платформа опускается на толщину одного слоя и на неё вновь наносится порошкообразный материал. Данная технология не нуждается в поддерживающих структурах «висящих в воздухе» элементов разрабатываемого объекта за счёт заполнения пустот порошком. Для уменьшения необходимой для спекания энергии температура рабочей камеры обычно поддерживается на уровне чуть ниже точки плавления рабочего материала, а для предотвращения окисления процесс проходит в бескислородной среде.
Электронно-лучевая плавка — аналогична технологиям SLS/DMLS, только здесь объект формируется путём плавления металлического порошка электронным лучом в вакууме[1][2][3].
Моделирование методом наплавления — объект формируется путём послойной укладки расплавленной нити из плавкого рабочего материала (пластик, металл, воск). Рабочий материал подаётся в экструзионную головку, которая выдавливает на охлаждаемую платформу тонкую нить расплавленного материала, формируя таким образом текущий слой разрабатываемого объекта. Далее платформа опускается на толщину одного слоя, чтобы можно было нанести следующий слой[1][2][3]. Часто в данной технологии участвуют две рабочие головки — одна выдавливает на платформу рабочий материал, другая — материал поддержки.
Изготовление объектов с использованием ламинирования (англ. laminated object manufacturing, LOM) — объект формируется послойным склеиванием (нагревом, давлением) тонких плёнок рабочего материала с вырезанием (с помощью лазерного луча или режущего инструмента) соответствующих контуров на каждом слое. За счет отсутствия пустот данная технология не нуждается в поддерживающих структурах «висящих в воздухе» элементов разрабатываемого объекта, однако, удаление лишнего материала (обычно его разделяют на мелкие кусочки) в некоторых ситуациях может вызывать затруднения[1][2][3].
Для быстрого прототипирования, то есть быстрого изготовления прототипов моделей и объектов для дальнейшей доводки. Уже на этапе проектирования можно кардинальным образом изменить конструкцию узла или объекта в целом. В инженерии такой подход способен существенно снизить затраты в производстве и освоении новой продукции.
Для быстрого производства — изготовление готовых деталей из материалов, поддерживаемых 3D-принтерами. Это отличное решение для мелкосерийного производства.
Изготовление моделей и форм для литейного производства.
Конструкция из прозрачного материала позволяет увидеть работу механизма «изнутри», что в частности было использовано инженерами Porsche при изучении тока масла в трансмиссии автомобиля ещё при разработке.
Производство различных мелочей в домашних условиях.
Производство сложных, массивных, прочных и недорогих систем. Например, беспилотный самолёт Polecat[en] компании Lockheed, большая часть деталей которого была изготовлена методом скоростной трёхмерной печати.
Разработки университета Миссури, позволяющие наносить на специальный био-гель сгустки клеток заданного типа. Развитие данной технологии — выращивание полноценных органов.
В медицине, при протезировании и производстве имплантатов (фрагменты скелета, черепа[8], костей, хрящевые ткани). Ведутся эксперименты по печати донорских органов[9].
Для строительства зданий и сооружений[10][11][12].
Для создания компонентов оружия (Defense Distributed). Существуют эксперименты по печати оружия целиком[13].
Производства корпусов экспериментальной техники (автомобили[14], телефоны, радио-электронное оборудование)
Пищевое производство[15].
Плоттер и сканер
Плоттер (графопостроитель) — устройство, которое чертит графики, рисунки или диаграммы под управлением компьютера. |
Плоттеры используются для получения сложных конструкторских чертежей, архитектурных планов, географических и метеорологических карт, деловых схем. Плоттеры рисуют изображения с помощью пера.
Роликовые плоттеры прокручивают бумагу под пером, а планшетные плоттеры перемещают перо через всю поверхность горизонтально лежащей бумаги.
Сканер — устройство для ввода в компьютер графических изображений. Создает оцифрованное изображение документа и помещает его в память компьютера. |
Если принтеры выводят информацию из компьютера, то сканеры, наоборот, переносят информацию с бумажных документов в память компьютера. Существуют ручные сканеры, которые прокатывают по поверхности документа рукой, и планшетные сканеры, по внешнему виду напоминающие копировальные машины.
Если при помощи сканера вводится текст, компьютер воспринимает его как картинку, а не как последовательность символов. Для преобразования такого графического текста в обычный символьный формат используют программы оптического распознавания образов
