- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции.
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли.
- •4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость. Метод проектирования в геодезии (план и карта)
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •7. Системы координат, применяемые в геодезии
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •9. Использование проекции Гаусса-Крюгера в геодезии и картографии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •18. Условные знаки общегеографических карт.
- •19. Картографическая генерализация
- •20. Основные особенности оформления топографических карт и планов
- •21. Способы изображения рельефа.
- •22. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними.
- •23. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача.
- •24. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •1) Вычисляют румб по формуле:
- •2) Находят дирекционный угол в зависимости от четверти угла:
- •3) Определяют расстояние между точками:
- •25. Методы определения координат геодезических пунктов
- •26. Триангуляция
- •27. Полигонометрия.
- •28. Трилатерация
- •29. Космические методы определения координат.
- •30. Спутниковые методы определения координат.
- •31. Определение координат точек методом засечек.
- •32 Теодолитный ход и его элементы.
- •33. Камеральная обработка разомкнутого теодолитного хода
- •39 Измерения, и их классификация. Виды геодезических измерений
- •Классификация по назначению
- •40. Погрешности измерений и их виды.
- •41. Вероятнейшее значение измеряемой величины
- •42. Средняя квадратическая погрешность отдельного измерения и результата измерений
- •43. Приборы для измерения линий.
- •44. Мерная лента. Измерение длин линий мерной лентой. Ошибки измерений расстояний штриховой стальной лентой.
- •45. Измерение длины наклонной линии и приведение ее на плоскость горизонта.
- •46. Оптические дальномеры. Сущность определения расстояния.
- •48. Измерение дальномером наклонных расстояний.
- •49 Сущность измерения линий свето- и радиоальномерами, их использование в геодезии.
- •Свето-, радио- и лазерные дальномеры основаны на измерении времени прохождения волн соответствующего диапазона от дальномера до второго конца измеряемой линии и обратно
- •50. Определение неприступных расстояний.
- •51. Основные части теодолита и их назначение.
- •52. Уровни в геодезических приборах, их назначение и требования к ним.
- •54. Измерение горизонтальных углов в теодолитном ходе.
- •55. Измерение вертикальных углов.
- •56. Основные источники ошибок при измерении горизонтальных углов.
- •57. Метод тригонометрического нивелирования.
- •58. Камеральная обработка хода тригонометрического нивелирования.
- •59. Основные виды геодезических сетей.
- •60. Построение государственной плановой сети.
- •61. Современное состояние плановой геодезической сети.
- •Плановые сети
- •62. Исследования реек.
- •62. Построение государственной нивелирной сети.
- •6.2.1. Схемы, методы, точность и плотность пунктов при создании сети
- •6.2.2. Типы нивелирных центров
- •63. Методы нивелирования.
- •64. Сущность геометрического нивелирования. Отклонение визирного луча уровенной поверхности.
- •Геометрическое нивелирование
- •Н ивелирование «вперед»
- •Нивелирование «из середины»
- •65 Типы нивелиров. Классификация и устройства нивелиров
- •Устройства нивелиров с цилиндрическим уровнем (на примере н3)
- •66. Основные части уровенного нивелира и их назначение. Основные части нивелира
- •67. Сущность гидростатического нивелирования.
- •68. Геометрические условия, которым должен удовлетворять нивелир.
- •69. Основные источники погрешностей геометрического нивелирования.
- •70. Производство технического нивелирования. Работа на нивелирной станции.
- •70. Принадлежности для мензульной съемки.
- •71. Назначение связующих и плюсовых точек при геометрическом нивелировании.
- •72 Сущность барометрического нивелирования.
- •73. Сущность мензульной съемки. Общий порядок производства съемки.
- •74. Построение съемочной сети для мензульной съемки.
- •75. Вид номограммы в поле зрения кипрегеля кн и использование ее.
- •76. Сущность тахеометрической съемки Приборы.
- •77. Съемка ситуации и рельефа при тахеометрической съемке. Абрис.
- •Порядок работы на станции тахеометрической съемки
- •78. Глазомерная съемка.
- •79. Общие введения об аэрофотосъемке местности. Фотокамера.
- •80. Плановый и перспективный снимки.
- •81. Масштаб горизонтального аэрофотоснимка.
- •82. Система координат снимка и его главная точка.
- •83 Основные свойства моно- и бинокулярного зрения.
- •84. Геометрические свойства аэрофотоснимка.
- •85. Измерение высот по аэрофотоснимкам, понятие об угловом и продольном параллаксе.
- •86. Сущность и этапы контурно-комбинированной съемки.
- •87. Понятие о стереотопографической съемке. Основные этапы.
- •88. Сущность фототеодолитной съемки.
- •75 Основные части кипрегеля ка-2 и их назначение.
5. Методы проектирования земной поверхности на плоскость. Метод проектирования в геодезии (план и карта)
Чтобы изобразить объемный предмет на плоском чертеже, применяют метод проекций. К простейшим проекциям относятся центральная и ортогональная проекции.
При графическом изображении Земной поверхности пользуются, главным образом, ортогональным проектированием. Допустим, что мы имеем на местности многоугольник, находящийся на поверхности Земли. Ввиду малого участка, не будем учитывать кривизну Земли и спроектируем участок на горизонтальную плоскость. Такой способ проектирования, когда проектирующие лучи перпендикулярны к плоскости проектирования называется ортогональным. Если полученное нами изображение многоугольника уменьшить в определенное число раз, получим план. Следовательно, планом называется уменьшенное и подобное изображение на плоскости небольшого участка Земной поверхности, принимаемого за плоскость.
При изображении больших участков земной поверхности учитывается шарообразность Земли. Составляя карты на такие территории, участки проектируют на эллипс (сферическую поверхность), а далее с него переходят на плоскость, для чего пользуются картографическими проекциями.
При центральной проекции (рис.1.5-а) проектирование выполняют линиями, исходящими из одной точки, которая называется центром проекции. Пусть требуется получить центральную проекцию четырехугольника ABCD на плоскость проекции P; центр проекции - точка S.
Проведем линии проектирования до пересечения с плоскостью проекции, получим точки a, b, c, d, являющиеся проекциями точек A, B, C, D. Плоскость проекции и объект могут располагаться по разные стороны от центра проекции; так при фотографировании центром проекции является оптический центр объектива, а плоскостью проекции - фотопластинка или фотопленка.
Рис.1.5-а
1.4.2. Ортогональная проекция
При ортогональной проекции линии проектирования перпендикулярны плоскости проекции. Проведем через точки A, B, C, D линии, перпендикулярные плоскости проекции P; в пересечении их с плоскостью P получим ортогональные проекции a, b, c, d соответствующих точек (рис.1.5-б)
Рис.1.5-б
1.4.3. Горизонтальная проекция
Чтобы изобразить на бумаге участок земной поверхности, нужно выполнить две операции: сначала спроектировать все точки участка на поверхность относимости (на поверхность эллипсоида вращения, или на поверхность сферы) и затем изобразить поверхность относимости на плоскости. Если участок местности небольшой, то соответствующий ему участок сферы или поверхности эллипсоида можно заменить плоскостью и считать, что проектирование выполняется сразу на плоскость.
При проектровании отдельных точек и целых участков земной поверхности на поверхность относимости применяется горизонтальная проекция, в которой проектирование выполняют отвесными линиями.
Пусть точки A, B, C находятся на поверхности Земли (рис.1.6). Спроектируем их на поверхность относимости и получим их горизонтальные проекции - точки a, b, c. Линия ab называется горизонтальной проекцией или горизонтальным проложением линии местности AB и обозначается буквой S. Угол между линией AB и ее горизонтальной проекцией AB' называется углом наклона линии и обозначается буквой ν.
Расстояния Aa, Bb, Cc от точек местности до их горизонтальных проекций называются высотами или альтитудами точек и обозначаются буквой H (HA, HB, HC); отметка точки - это численное значение ее высоты. Разность отметок двух точек называется превышением одной точки относительно другой и обозначается буквой h: hAB = HB - HA.
Рис.1.6
