- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции.
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли.
- •4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость. Метод проектирования в геодезии (план и карта)
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •7. Системы координат, применяемые в геодезии
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •9. Использование проекции Гаусса-Крюгера в геодезии и картографии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •18. Условные знаки общегеографических карт.
- •19. Картографическая генерализация
- •20. Основные особенности оформления топографических карт и планов
- •21. Способы изображения рельефа.
- •22. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними.
- •23. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача.
- •24. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •1) Вычисляют румб по формуле:
- •2) Находят дирекционный угол в зависимости от четверти угла:
- •3) Определяют расстояние между точками:
- •25. Методы определения координат геодезических пунктов
- •26. Триангуляция
- •27. Полигонометрия.
- •28. Трилатерация
- •29. Космические методы определения координат.
- •30. Спутниковые методы определения координат.
- •31. Определение координат точек методом засечек.
- •32 Теодолитный ход и его элементы.
- •33. Камеральная обработка разомкнутого теодолитного хода
- •39 Измерения, и их классификация. Виды геодезических измерений
- •Классификация по назначению
- •40. Погрешности измерений и их виды.
- •41. Вероятнейшее значение измеряемой величины
- •42. Средняя квадратическая погрешность отдельного измерения и результата измерений
- •43. Приборы для измерения линий.
- •44. Мерная лента. Измерение длин линий мерной лентой. Ошибки измерений расстояний штриховой стальной лентой.
- •45. Измерение длины наклонной линии и приведение ее на плоскость горизонта.
- •46. Оптические дальномеры. Сущность определения расстояния.
- •48. Измерение дальномером наклонных расстояний.
- •49 Сущность измерения линий свето- и радиоальномерами, их использование в геодезии.
- •Свето-, радио- и лазерные дальномеры основаны на измерении времени прохождения волн соответствующего диапазона от дальномера до второго конца измеряемой линии и обратно
- •50. Определение неприступных расстояний.
- •51. Основные части теодолита и их назначение.
- •52. Уровни в геодезических приборах, их назначение и требования к ним.
- •54. Измерение горизонтальных углов в теодолитном ходе.
- •55. Измерение вертикальных углов.
- •56. Основные источники ошибок при измерении горизонтальных углов.
- •57. Метод тригонометрического нивелирования.
- •58. Камеральная обработка хода тригонометрического нивелирования.
- •59. Основные виды геодезических сетей.
- •60. Построение государственной плановой сети.
- •61. Современное состояние плановой геодезической сети.
- •Плановые сети
- •62. Исследования реек.
- •62. Построение государственной нивелирной сети.
- •6.2.1. Схемы, методы, точность и плотность пунктов при создании сети
- •6.2.2. Типы нивелирных центров
- •63. Методы нивелирования.
- •64. Сущность геометрического нивелирования. Отклонение визирного луча уровенной поверхности.
- •Геометрическое нивелирование
- •Н ивелирование «вперед»
- •Нивелирование «из середины»
- •65 Типы нивелиров. Классификация и устройства нивелиров
- •Устройства нивелиров с цилиндрическим уровнем (на примере н3)
- •66. Основные части уровенного нивелира и их назначение. Основные части нивелира
- •67. Сущность гидростатического нивелирования.
- •68. Геометрические условия, которым должен удовлетворять нивелир.
- •69. Основные источники погрешностей геометрического нивелирования.
- •70. Производство технического нивелирования. Работа на нивелирной станции.
- •70. Принадлежности для мензульной съемки.
- •71. Назначение связующих и плюсовых точек при геометрическом нивелировании.
- •72 Сущность барометрического нивелирования.
- •73. Сущность мензульной съемки. Общий порядок производства съемки.
- •74. Построение съемочной сети для мензульной съемки.
- •75. Вид номограммы в поле зрения кипрегеля кн и использование ее.
- •76. Сущность тахеометрической съемки Приборы.
- •77. Съемка ситуации и рельефа при тахеометрической съемке. Абрис.
- •Порядок работы на станции тахеометрической съемки
- •78. Глазомерная съемка.
- •79. Общие введения об аэрофотосъемке местности. Фотокамера.
- •80. Плановый и перспективный снимки.
- •81. Масштаб горизонтального аэрофотоснимка.
- •82. Система координат снимка и его главная точка.
- •83 Основные свойства моно- и бинокулярного зрения.
- •84. Геометрические свойства аэрофотоснимка.
- •85. Измерение высот по аэрофотоснимкам, понятие об угловом и продольном параллаксе.
- •86. Сущность и этапы контурно-комбинированной съемки.
- •87. Понятие о стереотопографической съемке. Основные этапы.
- •88. Сущность фототеодолитной съемки.
- •75 Основные части кипрегеля ка-2 и их назначение.
28. Трилатерация
Трилатерация представляет собой сплошную сеть примыкающих один к другому треугольников, в которых измеряют длины всех сторон; два пункта, как минимум, должны иметь известные координаты (рис.2.25).
Решение первого треугольника трилатерации, в котором известны координаты двух пунктов и измерены две стороны, можно выполнить по формулам линейной засечки, причем нужно указывать справа или слева, от опорной линии AB располагается пункт 1. Во втором треугольнике также оказываются известными координаты двух пунктов и длины двух сторон; его решение тоже выполняется по формулам линейной засечки и так далее.
Рис.2.25. Схема сплошной сети трилатерации
Можно поступить и по-другому: сначала вычислить углы первого треугольника по теореме косинусов, затем, используя эти углы и дирекционный угол стороны AB, вычислить дирекционные углы сторон A1 и B1 и решить прямую геодезическую задачу от пункта A на пункт 1 и от пункта B на пункт 1.
Таким образом, в каждом отдельном треугольнике «чистой» трилатерации нет избыточных измерений и нет возможности выполнить контроль измерений, уравнивание и оценку точности; на практике кроме сторон треугольников приходится измерять некоторые дополнительные элементы и строить сеть так, чтобы в ней возникали геометрические условия.
29. Космические методы определения координат.
Космическая геодезия, являющаяся в настоящее время одной из основных составляющих геодезической науки, открыла принципиально новые возможности в развитии естествознания.
Запуск 4 октября 1957 г. первого искусственного спутника Земли и дальнейшее развитие ракетно-космической техники позволили решать задачи определения формы, размеров Земли и ее гравитационного поля в планетарном масштабе.
Технологическое развитие последних лет стало предпосылкой в создании высокоэффективных спутниковых систем для целей навигации и определения положения, которые можно использовать в геодезических целях.
Для решения геодезических задач, когда необходимо получать координаты точек с высокой точностью, используют относительные измерения, при которых дальности до спутников определяют фазовым методом, и по ним вычисляют приращения координат или вектора между станциями, на которых установлены спутниковые приемники.
Различают два основных способа относительных измерений: статический и кинематический.
При статическом позиционировании приемники работают одновременно на двух станциях — базовой с известными координатами и определяемой.
После окончания измерений выполняется совместная обработка информации, собранной двумя приемниками.
Кинематические измерения позволяют получать координаты точек земной поверхности за короткие промежутки времени. При этом вначале статическим способом определяют координаты первой точки, т. е. выполняют привязку подвижной станции к базовой, называемую инициализацией, а затем, не прерывая измерений, передвижной приемник устанавливают поочередно на вторую, третью и т. д. точки. Для контроля измерения завершают на первой точке либо на пункте с известными координатами, где выполняют статические наблюдения.
Космическая геодезия - раздел геодезии, в котором изучаются методы определения взаимного положения точек на земной поверхности, размеров и фигуры Земли,
Космическая геодезия рассматривает теорию и методы решения научных и практических задач на земной поверхности по наблюдениям небесных тел (Луна, Солнце, ИСЗ) и по наблюдениям Земли из космоса.
Космическая геодезия включает в себя глобальные навигационные системы, являющиеся основой применяемых в настоящее время координатных систем, и системы космического дистанционного зондирования многоцелевого назначения, используемые для мониторинга поверхности Земли.
