- •1. Предмет топографии и геодезии. Связь топографии и геодезии с другими науками
- •2. История развития геодезии. Федеральная служба геодезии и картографии и ее функции.
- •3. Эволюция представлений о фигуре Земли. Современные воззрения на фигуру Земли.
- •4. Понятие о методах определения фигуры и размеров Земли
- •5. Методы проектирования земной поверхности на плоскость. Метод проектирования в геодезии (план и карта)
- •6. Искажения за кривизну Земли при проецировании поверхности Земли на плоскость
- •7. Системы координат, применяемые в геодезии
- •8. Сущность проекции Гаусса-Крюгера и использование ее в геодезии
- •9. Использование проекции Гаусса-Крюгера в геодезии и картографии
- •10. План и карта
- •11. Свойства карты
- •12. Классификация карт
- •13. Элементы общегеографической карты
- •14. Масштабы. Различные способы выражения масштабов
- •15. Масштабный ряд государственных топографических карт
- •16. Разграфка и номенклатура топографических карт
- •17. Условные знаки топографических карт
- •18. Условные знаки общегеографических карт.
- •19. Картографическая генерализация
- •20. Основные особенности оформления топографических карт и планов
- •21. Способы изображения рельефа.
- •22. Ориентирование линий, истинный и магнитный азимуты, дирекционные углы, румбы, связь между ними.
- •23. Элементы взаимного расположения точек в плоской системе координат. Прямая геодезическая задача.
- •24. Элементы взаимного расположения точек в плоской системе координат. Обратная геодезическая задача
- •1) Вычисляют румб по формуле:
- •2) Находят дирекционный угол в зависимости от четверти угла:
- •3) Определяют расстояние между точками:
- •25. Методы определения координат геодезических пунктов
- •26. Триангуляция
- •27. Полигонометрия.
- •28. Трилатерация
- •29. Космические методы определения координат.
- •30. Спутниковые методы определения координат.
- •31. Определение координат точек методом засечек.
- •32 Теодолитный ход и его элементы.
- •33. Камеральная обработка разомкнутого теодолитного хода
- •39 Измерения, и их классификация. Виды геодезических измерений
- •Классификация по назначению
- •40. Погрешности измерений и их виды.
- •41. Вероятнейшее значение измеряемой величины
- •42. Средняя квадратическая погрешность отдельного измерения и результата измерений
- •43. Приборы для измерения линий.
- •44. Мерная лента. Измерение длин линий мерной лентой. Ошибки измерений расстояний штриховой стальной лентой.
- •45. Измерение длины наклонной линии и приведение ее на плоскость горизонта.
- •46. Оптические дальномеры. Сущность определения расстояния.
- •48. Измерение дальномером наклонных расстояний.
- •49 Сущность измерения линий свето- и радиоальномерами, их использование в геодезии.
- •Свето-, радио- и лазерные дальномеры основаны на измерении времени прохождения волн соответствующего диапазона от дальномера до второго конца измеряемой линии и обратно
- •50. Определение неприступных расстояний.
- •51. Основные части теодолита и их назначение.
- •52. Уровни в геодезических приборах, их назначение и требования к ним.
- •54. Измерение горизонтальных углов в теодолитном ходе.
- •55. Измерение вертикальных углов.
- •56. Основные источники ошибок при измерении горизонтальных углов.
- •57. Метод тригонометрического нивелирования.
- •58. Камеральная обработка хода тригонометрического нивелирования.
- •59. Основные виды геодезических сетей.
- •60. Построение государственной плановой сети.
- •61. Современное состояние плановой геодезической сети.
- •Плановые сети
- •62. Исследования реек.
- •62. Построение государственной нивелирной сети.
- •6.2.1. Схемы, методы, точность и плотность пунктов при создании сети
- •6.2.2. Типы нивелирных центров
- •63. Методы нивелирования.
- •64. Сущность геометрического нивелирования. Отклонение визирного луча уровенной поверхности.
- •Геометрическое нивелирование
- •Н ивелирование «вперед»
- •Нивелирование «из середины»
- •65 Типы нивелиров. Классификация и устройства нивелиров
- •Устройства нивелиров с цилиндрическим уровнем (на примере н3)
- •66. Основные части уровенного нивелира и их назначение. Основные части нивелира
- •67. Сущность гидростатического нивелирования.
- •68. Геометрические условия, которым должен удовлетворять нивелир.
- •69. Основные источники погрешностей геометрического нивелирования.
- •70. Производство технического нивелирования. Работа на нивелирной станции.
- •70. Принадлежности для мензульной съемки.
- •71. Назначение связующих и плюсовых точек при геометрическом нивелировании.
- •72 Сущность барометрического нивелирования.
- •73. Сущность мензульной съемки. Общий порядок производства съемки.
- •74. Построение съемочной сети для мензульной съемки.
- •75. Вид номограммы в поле зрения кипрегеля кн и использование ее.
- •76. Сущность тахеометрической съемки Приборы.
- •77. Съемка ситуации и рельефа при тахеометрической съемке. Абрис.
- •Порядок работы на станции тахеометрической съемки
- •78. Глазомерная съемка.
- •79. Общие введения об аэрофотосъемке местности. Фотокамера.
- •80. Плановый и перспективный снимки.
- •81. Масштаб горизонтального аэрофотоснимка.
- •82. Система координат снимка и его главная точка.
- •83 Основные свойства моно- и бинокулярного зрения.
- •84. Геометрические свойства аэрофотоснимка.
- •85. Измерение высот по аэрофотоснимкам, понятие об угловом и продольном параллаксе.
- •86. Сущность и этапы контурно-комбинированной съемки.
- •87. Понятие о стереотопографической съемке. Основные этапы.
- •88. Сущность фототеодолитной съемки.
- •75 Основные части кипрегеля ка-2 и их назначение.
26. Триангуляция
2.3. Понятие о триангуляции.
Триангуляция представляет собой группу примыкающих один к другому треугольников, в которых измеряют все три угла; два или более пунктов имеют известные координаты, координаты остальных пунктов подлежат определению. Группа треугольников образует либо сплошную сеть, либо цепочку треугольников.
В первом треугольнике ABP (рис.2.24) известны координаты двух вершин (A и B) и его решение выполняют в следующем порядке:
Рис.2.24. Единичный треугольник триангуляции
Вычисляют
сумму измеренных углов
,
Принимая
во внимание, что в треугольнике Σβ =
180о, вычисляют угловую невязку:
Поскольку
то
Это уравнение содержит три неизвестных поправки β и решить его можно лишь при наличии двух дополнительных условий.
Эти условия имеют вид:
откуда
следует, что
Вычисляют
исправленные значения углов:
Решают обратную задачу между пунктами A и B вычисляют дирекционный угол αAB и длину S3 стороны AB.
По теореме синусов находят длины сторон AP и BP:
Вычисляют дирекционные углы сторон AP и BP:
Решают прямую геодезическую задачу из пункта A на пункт P и для контроля - из пункта B на пункт P; при этом оба решения должны совпасть.
В сплошных сетях триангуляции кроме углов в треугольниках измеряют длины отдельных сторон треугольников и дирекционные углы некоторых направлений; эти измерения выполняются с большей точностью и играют роль дополнительных исходных данных. При уравнивании сплошных сетей триангуляции в них могут возникнуть следующие условия:
условия фигуры,
условия суммы углов,
условия горизонта,
полюсные условия,
базисные условия,
условия дирекционных углов,
координатные условия.
Формула для подсчета количества условий в произвольной сети триангуляции имеет вид:
где n - общее количество измеренных углов в треугольниках,
k - число пунктов в сети,
g - количество избыточных исходных данных.
Триангуляцию
выполняют теодолитами – приборами,
позволяющими измерять вертикальные
углы. Если
с точки А на точку В или с точки В на
точку С измерить углы наклона ν
и определить горизонтальное проложение
d, превышения между этими точками можно
вычислить по формуле
h = dtg ν +I – ν – f,
где i- высота теодолита над точкой, ν – высота наведения при измерении угла наклона, f – поправка за кривизну Земли и рефракцию, выбираемая из специальных таблиц. Поправку вводят при расстояниях между точками, больших 300м.
При положительном угле наклона (+ν) превышение будет иметь знак плюс, при отрицательном (-ν) – минус.
27. Полигонометрия.
Метод полигонометрии заключается в построении на местности ломанных линий, называется полигонометрическими ходами. Эти ходы прокладываются обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон.
Полигонометрия (от греч. polýgonos – многоугольный) – один из методов определения взаимного положения точек земной поверхности для построения опорной геодезической сети служащей основой топографических съёмок, планировки и строительства городов, перенесения проектов инженерных сооружений в натуру и т.п.
Положения пунктов в принятой системе координат определяют методом полигонометрии путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Так, выбрав на местности точки 1, 2, 3, …, n, n + 1 измеряют длины s1, s2,..., sn. линий между ними и углы b2, b3,..., bn между этими линиями (см. рис.).
Как правило, начальную точку 1 полигонометрического хода совмещают с опорным пунктом Рн, который уже имеет известные координаты хн, ун и в котором известен также исходный дирекционный угол aн направления на какую-нибудь смежную точку Р'н. В начальной точке полигонометрического хода, т. е. в пункте Рн, измеряют также примычный угол b1 между первой стороной хода и исходным направлением РнР’н. Тогда дирекционный угол ai стороны i и координаты xi+1, yi+1 пункта i + 1 полигонометрического хода могут быть вычислены по формулам:
ai = aн + åir=1br - i 180°
xi+1 = хн + åir=1srcosar
yi+1 = ун + åir=1srsinar.
Для контроля и оценки точности измерений в полигонометрическом ходе его конечную точку n + 1 совмещают с опорным же пунктом Pk, координаты xk, yk которого известны и в котором известен также дирекционный угол ak направления на смежную точку P'k. Это даёт возможность вычислить т. н. угловую и координатные невязки в полигонометрическом ходе, зависящие от погрешностей измерения длин линий и углов и выражающиеся формулами:
fa = an+1 - ak,
fx = xn+1 - xk,
fy = yn+1 - yk.
Эти невязки устраняют путём исправления измеренных углов и длин сторон поправками, которые определяют из уравнивания по методу наименьших квадратов.
При значительных размерах территории, на которой должна быть создана опорная геодезическая сеть, прокладываются взаимно пересекающиеся полигонометрические ходы, образующие полигонометрическую сеть (рис. 2).
Полигонометрическая сеть
Пункты полигонометрии закрепляются на местности закладкой подземных бетонных монолитов или металлических труб с якорями и установкой наземных знаков в виде деревянных или металлических пирамид.
