Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Геодезия билеты.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.8 Mб
Скачать

26. Триангуляция

2.3. Понятие о триангуляции.

Триангуляция представляет собой группу примыкающих один к другому треугольников, в которых измеряют все три угла; два или более пунктов имеют известные координаты, координаты остальных пунктов подлежат определению. Группа треугольников образует либо сплошную сеть, либо цепочку треугольников.

В первом треугольнике ABP (рис.2.24) известны координаты двух вершин (A и B) и его решение выполняют в следующем порядке:

Рис.2.24. Единичный треугольник триангуляции

Вычисляют сумму измеренных углов ,

Принимая во внимание, что в треугольнике Σβ = 180о, вычисляют угловую невязку:

Поскольку

то        

Это уравнение содержит три неизвестных поправки β и решить его можно лишь при наличии двух дополнительных условий.

Эти условия имеют вид:

откуда следует, что

Вычисляют исправленные значения углов:

Решают обратную задачу между пунктами A и B вычисляют дирекционный угол αAB и длину S3 стороны AB.

По теореме синусов находят длины сторон AP и BP:

Вычисляют дирекционные углы сторон AP и BP:

Решают прямую геодезическую задачу из пункта A на пункт P и для контроля - из пункта B на пункт P; при этом оба решения должны совпасть.

В сплошных сетях триангуляции кроме углов в треугольниках измеряют длины отдельных сторон треугольников и дирекционные углы некоторых направлений; эти измерения выполняются с большей точностью и играют роль дополнительных исходных данных. При уравнивании сплошных сетей триангуляции в них могут возникнуть следующие условия:

  • условия фигуры,

  • условия суммы углов,

  • условия горизонта,

  • полюсные условия,

  • базисные условия,

  • условия дирекционных углов,

  • координатные условия.

Формула для подсчета количества условий в произвольной сети триангуляции имеет вид:

где n - общее количество измеренных углов в треугольниках,

k - число пунктов в сети,

g - количество избыточных исходных данных.

Триангуляцию выполняют теодолитами – приборами, позволяющими измерять вертикальные углы. Если с точки А на точку В или с точки В на точку С измерить углы наклона ν и определить горизонтальное проложение d, превышения между этими точками можно вычислить по формуле

h = dtg ν +I – ν – f,

где i- высота теодолита над точкой, ν – высота наведения при измерении угла наклона, f – поправка за кривизну Земли и рефракцию, выбираемая из специальных таблиц. Поправку вводят при расстояниях между точками, больших 300м.

            При положительном угле наклона (+ν) превышение будет иметь знак плюс, при отрицательном (-ν) – минус.

27. Полигонометрия.

Метод полигонометрии заключается в построении на местности ломанных линий, называется полигонометрическими ходами. Эти ходы прокладываются обычно между пунктами триангуляции. В полигонометрических ходах измеряются все углы поворота и длины всех сторон.

Полигонометрия (от греч. polýgonos – многоугольный) – один из методов определения взаимного положения точек земной поверхности для построения опорной геодезической сети служащей основой топографических съёмок, планировки и строительства городов, перенесения проектов инженерных сооружений в натуру и т.п.

Положения пунктов в принятой системе координат определяют методом полигонометрии путём измерения на местности длин линий, последовательно соединяющих эти пункты и образующих полигонометрический ход, и горизонтальных углов между ними. Так, выбрав на местности точки 1, 2, 3, …, n, n + 1 измеряют длины s1, s2,..., sn. линий между ними и углы b2, b3,..., bn между этими линиями (см. рис.).

Как правило, начальную точку 1 полигонометрического хода совмещают с опорным пунктом Рн, который уже имеет известные координаты хн, ун и в котором известен также исходный дирекционный угол aн направления на какую-нибудь смежную точку Р'н. В начальной точке полигонометрического хода, т. е. в пункте Рн, измеряют также примычный угол b1 между первой стороной хода и исходным направлением РнР’н. Тогда дирекционный угол ai стороны i и координаты xi+1, yi+1 пункта i + 1 полигонометрического хода могут быть вычислены по формулам:

ai = aн + åir=1br - i 180°

xi+1 = хн + åir=1srcosar

yi+1 = ун + åir=1srsinar.

Для контроля и оценки точности измерений в полигонометрическом ходе его конечную точку n + 1 совмещают с опорным же пунктом Pk, координаты xk, yk которого известны и в котором известен также дирекционный угол ak направления на смежную точку P'k. Это даёт возможность вычислить т. н. угловую и координатные невязки в полигонометрическом ходе, зависящие от погрешностей измерения длин линий и углов и выражающиеся формулами:

fa = an+1 - ak,

fx = xn+1 - xk,

fy = yn+1 - yk.

Эти невязки устраняют путём исправления измеренных углов и длин сторон поправками, которые определяют из уравнивания по методу наименьших квадратов.

При значительных размерах территории, на которой должна быть создана опорная геодезическая сеть, прокладываются взаимно пересекающиеся полигонометрические ходы, образующие полигонометрическую сеть (рис. 2).

Полигонометрическая сеть

Пункты полигонометрии закрепляются на местности закладкой подземных бетонных монолитов или металлических труб с якорями и установкой наземных знаков в виде деревянных или металлических пирамид.