- •С борник Вопросов, упражнений и задач по дисциплине «физика»
- •Часть 1
- •Предисловие.
- •Основные формулы для решения задач
- •1. Положение материальной точки в пространстве задается радиус-вектором
- •2. Средние скорость и ускорение
- •3. Мгновенные скорость и ускорение
- •4. Кинематические уравнения движения
- •5. Средние угловая скорость и ускорение
- •6. Мгновенные угловая скорость и ускорение
- •7. Кинематическое уравнение вращательного движения материальной точки относительно неподвижной оси
- •8. Ускорение в плоском криволинейном движении
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •3. Силы, действующие на заряд в электрическом и магнитном полях
- •4. Принцип суперпозиции сил
- •5. Динамика материальной точки, движущейся по окружности
- •6. Импульс тела. Закон сохранения импульса
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •2. Связь работы с изменением кинетической энергии
- •3. Потенциальная энергия и ее виды.
- •Справочный материал
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •2. Момент инерции однородных тел правильной геометрической формы
- •Теорема Штейнера
- •3. Моментом импульса относительно точки о
- •4. Уравнения динамики вращательного движения
- •5. Закон сохранения момента импульса
- •6. Работа и мощность момента силы
- •7. Кинетическая энергия вращательного движения
- •8. Связь работы с изменением вращательной кинетической энергии
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Справочный материал
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •4. С другой стороны
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •3. Электростатика и постоянный ток Занятие 11. Закон Кулона. Напряженность электростатического поля содержание теории
- •12. Напряженность поля точечного заряда
- •13. Напряженность поля заряженной сферы
- •14. Напряженность поля заряженной нити
- •Справочный материал
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •2. Потенциал точечного заряда
- •3. Потенциал заряженной сферы
- •4. Потенциал системы зарядов
- •5. Потенциальная энергия системы зарядов
- •6. Связь напряженности и потенциала электрического поля
- •7. Работа по перемещению заряда в поле
- •8. Циркуляция вектора напряженности электрического поля
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •3. Электроемкость системы конденсаторов
- •4. Энергия заряженного проводника:
- •5. Энергия заряженного конденсатора
- •6. Объемная плотность энергии электрического поля
- •7. Сила притяжения пластин плоского кондесатора
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Занятие 14. Электрическое поле в диэлектриках содержание теории
- •Основные формулы для решения задач
- •1. Электрический момент диполя
- •Справочный материал
- •Вопросы и упражнения
- •Задачи группы а
- •Задачи группы б
- •Задачи группы с
- •Библиографический список.
- •Содержание
- •Сапогин Владимир Георгиевич Третьякова Алина Васильевна Фатеева Валентина Афанасьевна
8. Ускорение в плоском криволинейном движении
или
,
где
характеризует
быстроту изменения модуля скорости
(см. рис. 1.1);
an = - характеризует быстроту изменения вектора скорости по направлению ( см. рис. 1.1).
Соответствие линейных и угловых величин показано в табл.1.
Таблица №1
Линейные величины |
Угловые величины |
S,х |
φ |
υ |
ω |
|
|
an= |
an=ω2R |
x=0x+axt |
z=0z+zt |
|
|
2axsx=x2–0x2 |
2zz=z2–0z2 |
Справочный материал
Заряд электрона e=1,610-19 Кл.
Масса электрона m=9,110-31 кг.
Ускорение свободного падения g=9,8 м/с2.
Вопросы и упражнения
Что изучает механика как один из разделов физики?
Почему при изучении реальных физических явлений и объектов приходится использовать модельные представления и абстрагированные понятия? Дайте определение: а) материальной точке (частице); б) системе материальных точек; в) абсолютно твердому телу.
Каково содержание понятий пространства и времени в классической механике? Что означают понятия "однородность и изотропность пространства'', "однородность времени"?
Какие существуют способы описания движения материальной точки? Что представляет собой система отсчета, система координат? Что называется радиусом-вектором ?
Покажите, что задание кинематического закона движения в координатной форме х=х (t), у=у (t), z=z (t) эквивалентно заданию его в векторной форме
,
где х, у, z – декартовы координаты
положения материальной точки,
– ее радиус-вектор. Каковы преимущества
векторного описания движения?
Дайте определение кинематических величин: а) перемещения ; б) скорости
;
в) ускорения
.
В каких единицах измеряются эти величины?
Как ориентированы векторы скорости и
ускорения относительно траектории и
друг друга?
Частица движется по закону
где 0
и g – известные постоянные;
– орт координатной оси z. Найдите
скорость
частицы и ее ускорение
,
а также их проекции
и
как функции времени.Ускорение движущейся частицы
где A – известная постоянная;
– орт координатной оси х. В момент
времени t=0 х=x0
и x=0,
где х0
и 0
–
известные постоянные (начальные
условия). Найдите проекцию скорости
и координату x как функции времени.Какое движение абсолютно твердого тела называется: а) поступательным; б) вращательным? Приведите примеры таких движений.
Что называется тангенциальным а и нормальным аn ускорениями? Чему они равны? От чего зависит угол между векторами скорости и полного ускорения движущейся материальной точки?
Какие векторы называют аксиальными? Дайте определение: а) угла поворота
твердого тела; б) угловой скорости
;
в) углового ускорения
относительно неподвижной в пространстве
оси вращения. В каких единицах измеряются
эти величины?
Колесо вращается вокруг неподвижной оси, проходящей через его центр масс. Обладает ли любая точка на ободе тангенциальным и нормальным ускорениями, если вращение происходит: а) с постоянной угловой скоростью; б) с постоянным угловым ускорением? Изменяются ли при этом модули этих величин?
