- •Билет 1
- •3 Закон Менделя (Закон независимого расщепления признаков и комбинирования генов).
- •Билет 2
- •3 Роль ядра в передаче наследственных признаков. Опыты в. Астаурова по андрогенезу.
- •Билет 3
- •3.Положения хромосомной теории:
- •Билет 4
- •Билет 5
- •Билет 6
- •Билет 7
- •1.Дыхание - кислород используется(расходуется)
- •Билет 8
- •3.Взаимодействие неаллельных генов
- •Билет 9
- •Билет 10
- •Билет 11
- •2.Формы сожительства организмов:
- •Билет 12
- •Билет 13
- •3.Методы изучения генетики человека:
- •Билет 14
- •Билет 15
- •Билет 16
- •3.Положения хромосомной теории:
- •Билет 17
- •Билет 18
- •3.Опыт Херши и Чейза.
- •Билет 19
- •Билет 20
- •2 Соотношение онтогенеза и филогенеза
- •Билет 21
- •1. Связь биологии с другими науками.
- •2. Развитие человека после рождения (постнатальный период онтогенеза)
- •Билет 22
- •Билет 23
- •Билет 24
- •Билет 25
- •2. Закономерности протекания онтогенеза у человека
- •3.Взаимодействие аллелей :
Билет 7
1.Дыхание - кислород используется(расходуется)
фотосинтез - кислород создается
При дыхании:
1)Выделяется СО2 и поглощается О2.
2)Происходит во всех живых клетках.
3)Протекает на свету и в темноте.
4)Органические вещества разрушаются и выделяется энергия.
При питании (фотосинтезе):
1)Выделяется О2 и поглощается СО2.
2)Происходит в клетках с зелеными хлоропластами.
3)Протекает только на свету.
4)Органические вещества образуются, энергия расходуется.
2.Эмбриональная индукция (гетеро- и гомогенная; опыты Спермана, 1924). Влияние «организационного центра» на развитие компетентных клеток и тканей до достижения независимого развития. Регулируется специфическими и неспецифическими химическими индукторами.
Явление эмбриональной индукции с начала XX в. изучает экспериментальная эмбриология.
Классическими считают опыты немецкого ученого Г. Шпемана и его сотрудников (1924) на зародышах амфибий. Для того чтобы иметь возможность проследить за судьбой клеток определенного участка зародыша, Шпеман использовал два вида тритонов: тритона гребенчатого, яйца которого лишены пигмента и потому имеют белый цвет, и тритона полосатого, яйца которого благодаря пигменту имеют желто-серый цвет.
Один из опытов заключается в следующем: кусочек зародыша из области дорсальной губы бластопора на стадии гаструлы тритона гребенчатого пересаживают на боковую или вентральную сторону гаструлы тритона полосатого (рис. 8.8). В месте пересадки происходит развитие нервной трубки, хорды и других органов. Развитие может достичь довольно продвинутых стадий с образованием дополнительного зародыша на боковой или вентральной стороне зародыша реципиента. Дополнительный зародыш содержит в основном клетки зародыша реципиента, но светлые клетки зародыша-донора тоже обнаруживаются в составе различных органов.
Из этого и подобных опытов следует несколько выводов.
Во-первых, участок, взятый из спинной губы бластопора, способен направлять или даже переключать развитие того материала, который находится вокруг него, на определенный путь развития. Он как бы организует, или индуцирует, развитие зародыша как в обычном, так и в нетипичном месте.
Во-вторых, боковая и брюшная стороны гаструлы обладают более широкими потенциями к развитию, нежели их презумптивное (предполагаемое) проспективное направление, так как вместо обычной поверхности тела в условиях эксперимента там образуется целый зародыш.
В-третьих, достаточно точное строение новообразованных органов в месте пересадки указывает на эмбриональную регуляцию. Это означает, что фактор целостности организма приводит к достижению хорошего конечного результата из нетипичных клеток в нетипичном месте, как бы управляя процессом, регулируя его в целях достижения этого результата.
Г. Шпеман назвал спинную губу бластопора первичным эмбриональным организатором. Первичным потому, что на более ранних стадиях развития подобных влияний обнаружить не удавалось, а организатором потому, что влияние происходило именно на морфогенез. В настоящее время установлено, что главная роль в спинной губе бластопора принадлежит хордомезодермальному зачатку, который назвали первичным эмбриональным индуктором, а само явление, при котором один участок зародыша влияет на судьбы другого,— эмбриональной индукцией.
3.Молекулярные болезни человека могут быть вызваны генными мутациями. В настоящее время обнаружен первичный биохимический дефект примерно для 120 наследственных болезней.
1)Серповидно-клеточная анемия. Нарушение структуры гемоглобина вследствие нуклеотидной мутации. Замена одного нуклеотида влечет замену одной аминокислоты, что приводит к нарушению первичной, а затем всех остальных конфигураций гемоглобина. Появление HbS вместо Hb+. Изменение пространственной структуры гемоглобина приводит к изменению формы эритроцитов.
2)Фенилкетонурия. Наследственное аутосомно-рецессивное нарушение обмена фенилаланина. Из-за отсутствия фермента фенилаланингидроксилазыфенилаланин не может перейти в тирозин. Он накапливается в тканях и превращается в кетокислоты, которые как и фенилаланин токсичны. Эти токсичные вещества действуют на мозг и вызывают умственную отсталость, идиотию, имбицильность. Фенилаланин является незаменимой аминокислотой. Разработаны эффективные диеты для лечения.
3) Альбинизм. Развивается в результате отсутствия пигмента меланина, который находится в меланоцитах. При распространенном альбинизме меланин отсутствует в коже, волосах, радужной оболочке. Это сопровождается светобоязнью, снижением остроты зрения. Местный альбинизм захватывает часть кожи и волосы, но никогда не поражает глаз. Лечения альбинизма не существует.
