- •Оглавление
- •Введение
- •1. Термодинамика энергетических установок
- •1.1. Основные понятия и законы термодинамики
- •1.2. Термодинамические процессы изменения состояния идеального газа
- •1.3. Термодинамические свойства воды и водяного пара
- •1.3.1. Термодинамические свойства паров
- •1.3.2. Водяной пар. Парообразование при постоянном давлении
- •1.3.3. Таблицы и диаграммы для воды и водяного пара
- •1.3.4. Основные термодинамические процессы водяного пара
- •Контрольные вопросы
- •2. Принципиальные схемы теплоэнергетических установок
- •2.1. Схема тепловой электрической станции
- •2.2. Схема котельной установки
- •2.3. Тепловые схемы теплогенерирующих установок
- •2.3.1. Принципиальная тепловая схема производственно-отопительной теплогенерирующей установки
- •2.3.2. Принципиальная тепловая схема отопительной теплогенерирующей установки с водогрейными котлами
- •2.4. Паросиловые установки
- •2.4.1. Цикл паросиловой установки – цикл Ренкина
- •2.4.2. Цикл паротурбинной установки с регенерацией
- •2.4.3. Цикл паротурбинной установки с промежуточным перегревом пара
- •2.4.4. Теплофикационный цикл паросиловой установки
- •2.5. Газотурбинные установки
- •2.5.3. Цикл с регенерацией теплоты
- •2.6. Поршневые двигатели внутреннего сгорания
- •2.6.1. Цикл двигателя с изохорным подводом теплоты
- •2.6.2. Цикл двигателя с изобарным подводом теплоты
- •2.6.3. Цикл двигателя со смешанным подводом теплоты
- •2.6.4. Цикл турбопоршневого двигателя
- •2.7. Комбинированные силовые установки
- •2.7.1. Парогазовая установка
- •2.7.2. Установка для комплексного производства теплоты и твердого диоксида углерода
- •Контрольные вопросы
- •3. Расчет тепловых схем и элементов энергетических установок
- •3.1. Расчет паросиловых установок
- •Влияние начальных давлений на экономичность цикла Ренкина
- •Влияние начальных температур на экономичность цикла Ренкина
- •Энтальпия пара, направляемого на производство, равна
- •3.2. Расчет газотурбинных установок
- •3.3. Расчет поршневых двигателей внутреннего сгорания
- •Задание к курсовой работе по дисциплине «Тепловые электрические станции» Студент _______________________
- •Варианты задание к курсовой работе
- •Контрольные задачи
- •Список рекомендуемой литературы
- •Приложение
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (по температуре)
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (по давлениям)
- •Термодинамические параметры недогретой воды и перегретого пара
- •Условные обозначения оборудования, арматуры на тепловых схемах
1.3.2. Водяной пар. Парообразование при постоянном давлении
Водяной пар получил широкое распространение как рабочее вещество в тепловых двигателях и как движущая среда, используемая для осуществления процесса теплообмена в теплообменных аппаратах.
Водяной пар есть вода в газообразном состоянии.
Процесс превращения воды в пар называется парообразованием и может осуществляться двумя различными по интенсивности и характеру процессами: испарением и кипением.
Под испарением понимают парообразование, происходящее на свободной поверхности воды при температуре ниже точки кипения при данном давлении.
Кипение – процесс интенсивного испарения не только со свободной поверхности воды, но и со всего объема образующихся внутри пузырьков пара.
Рассмотрим процесс парообразования 1 кг воды, заключенного в цилиндр 1 с подвижным поршнем 2 (рис. 1.4), давление под которым в течение всего процесса остается постоянным. Предположим, что в начальном состоянии (положение поршня 0) вода находится при t0 = 0 ОС и занимает объем 0 = 0,001 м3/кг.
При изобарном процессе подвода теплоты к воде температура и удельный объем воды будет увеличиваться, и при достижении некоторой температуры tS вода закипит. На рис. 1.4 состоянию воды на границе кипения соответствует положение поршня 1.
|
Рис. 1.4. Процесс парообразования |
Пар, находящийся в термодинамическом равновесии с водой, из которой он образуется, называется насыщенным.
Влажный насыщенный пар представляет собой смесь пара с жидкостью, причем жидкость может быть сосредоточена в нижней части цилиндра или равномерно распределена в виде мельчайших капель по всему объему.
Процесс парообразования идет при постоянном давлении и температуре (изобарно-изотермический процесс). Вследствие этого свойства насыщенного пара определяются температурой, являющейся функцией давления среды, в которой происходит процесс парообразования. При подводе теплоты в процессе парообразования количество пара будет возрастать с одновременным уменьшением количества кипящей воды. Положение поршня 2 на рис. 1.4 соответствует моменту окончания процесса парообразования.
Количество теплоты, необходимое для превращения 1 кг кипящей воды в сухой насыщенный пар, называется теплотой парообразования.
Во всех промежуточных состояниях между первым и вторым положениями поршня (см. рис. 1.4) под ним находится влажный насыщенный пар, представляющий собой смесь m' кг кипящей жидкости и m" кг сухого насыщенного пара.
Отношение
называют степенью
сухости
влажного насыщенного пара, а величину
степенью
влажности.
Степень сухости изменяется от х
= 0 (кипящая вода) до х
= 1 (сухой насыщенный пар).
При подводе теплоты сухой насыщенный пар переходит в состояние перегретого пара (положение поршня 3 на рис. 1.4). Под перегретым понимают пар, температура которого выше температуры насыщенного пара того же давления.
