- •Оглавление
- •Введение
- •1. Термодинамика энергетических установок
- •1.1. Основные понятия и законы термодинамики
- •1.2. Термодинамические процессы изменения состояния идеального газа
- •1.3. Термодинамические свойства воды и водяного пара
- •1.3.1. Термодинамические свойства паров
- •1.3.2. Водяной пар. Парообразование при постоянном давлении
- •1.3.3. Таблицы и диаграммы для воды и водяного пара
- •1.3.4. Основные термодинамические процессы водяного пара
- •Контрольные вопросы
- •2. Принципиальные схемы теплоэнергетических установок
- •2.1. Схема тепловой электрической станции
- •2.2. Схема котельной установки
- •2.3. Тепловые схемы теплогенерирующих установок
- •2.3.1. Принципиальная тепловая схема производственно-отопительной теплогенерирующей установки
- •2.3.2. Принципиальная тепловая схема отопительной теплогенерирующей установки с водогрейными котлами
- •2.4. Паросиловые установки
- •2.4.1. Цикл паросиловой установки – цикл Ренкина
- •2.4.2. Цикл паротурбинной установки с регенерацией
- •2.4.3. Цикл паротурбинной установки с промежуточным перегревом пара
- •2.4.4. Теплофикационный цикл паросиловой установки
- •2.5. Газотурбинные установки
- •2.5.3. Цикл с регенерацией теплоты
- •2.6. Поршневые двигатели внутреннего сгорания
- •2.6.1. Цикл двигателя с изохорным подводом теплоты
- •2.6.2. Цикл двигателя с изобарным подводом теплоты
- •2.6.3. Цикл двигателя со смешанным подводом теплоты
- •2.6.4. Цикл турбопоршневого двигателя
- •2.7. Комбинированные силовые установки
- •2.7.1. Парогазовая установка
- •2.7.2. Установка для комплексного производства теплоты и твердого диоксида углерода
- •Контрольные вопросы
- •3. Расчет тепловых схем и элементов энергетических установок
- •3.1. Расчет паросиловых установок
- •Влияние начальных давлений на экономичность цикла Ренкина
- •Влияние начальных температур на экономичность цикла Ренкина
- •Энтальпия пара, направляемого на производство, равна
- •3.2. Расчет газотурбинных установок
- •3.3. Расчет поршневых двигателей внутреннего сгорания
- •Задание к курсовой работе по дисциплине «Тепловые электрические станции» Студент _______________________
- •Варианты задание к курсовой работе
- •Контрольные задачи
- •Список рекомендуемой литературы
- •Приложение
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (по температуре)
- •Термодинамические свойства воды и водяного пара в состоянии насыщения (по давлениям)
- •Термодинамические параметры недогретой воды и перегретого пара
- •Условные обозначения оборудования, арматуры на тепловых схемах
2.5.3. Цикл с регенерацией теплоты
Одной из мер повышения совершенства перехода теплоты в работу в газотурбинной установке является применение регенерации теплоты. Регенерация теплоты заключается в использовании теплоты отработавших газов для подогрева воздуха, поступающего в камеру сгорания (рис. 2.16). Экономичность ГТУ при применении регенерации повышается.
Воздух из компрессора К направляется в регенеративный теплообменник Р, где он получает теплоту от газов, вышедших из турбины. После подогрева воздух направляется в камеру сгорания КС, в которую подается топливо. Воздух, получивший теплоту от отработавших газов, должен получить в камере сгорания меньше теплоты для достижения определенной температуры газа перед турбиной.
Цикл ГТУ с регенерацией теплоты показан на рис. 2.16. На диаграммах: 1-2 – адиабатное сжатие воздуха в компрессоре; 2-5 изобарный подогрев воздуха в регенераторе; 5-3 – подвод теплоты при р = const в камере сгорания; 3-4 – адиабатное расширение газа в турбине; 4-6 – отдача теплоты при р = const в регенераторе; 6-1 – отдача теплоты при р = const в окружающую среду.
Если предположить, что охлаждение газов в регенераторе происходит до температуры воздуха, поступающего в него, Т6 = Т2, то регенерация будет полной.
а
|
б |
в |
Рис. 2.16. Схема ГТУ с регенерацией (а) и цикл в диаграммах р- (б) и Т-s (в): К компрессор; Р регенератор; КС – камера сгорания; ГТ – газовая турбина; ЭГ электрогенератор |
||
Термический КПД цикла при полной регенерации, когда Т4 – Т6 = Т5 – T2, рассчитывается по формуле
где
Тогда
При принятых параметрах цикла ГТУ с подводом теплоты при р = const температуры в точках 2, 3 и 4 соответственно равны:
Термический КПД цикла
Анализ последней формулы показывает, что термический КПД цикла при полной регенерации зависит от начальной температуры и от температуры в конце адиабатного расширения. Обычно двигатели работают не при полной регенерации, поэтому Т6 > Т2. При этом термический КПД цикла должен учитывать степень регенерации, определяемую как отношение количества теплоты, переданной воздуху, к тому количеству теплоты, которое могло бы быть передано при охлаждении газов до температуры воздуха.
Степень регенерации
Величина степени регенерации определяется качеством и величиной рабочих поверхностей теплообменника (регенератора).
В настоящее время регенерация теплоты находит практическое применение в основном в стационарных установках и реже в транспортных установках из-за большой массы и габаритов регенератора.
2.6. Поршневые двигатели внутреннего сгорания
Двигатели, в которых процесс сгорания осуществляется в рабочем пространстве машины, называют двигателем внутреннего сгорания (ДВС).
В ДВС могут быть использованы следующие циклы:
а) цикл с подводом теплоты при постоянном объеме ( = const);
б) цикл с подводом теплоты при постоянном давлении (р = const);
в) цикл со смешанным подводом теплоты, как при постоянном объеме, так и при постоянном давлении.
Во всех перечисленных циклах отвод теплоты в цикле производится при постоянном объеме в силу того, что расширение газа происходит не полностью, и степень возможного расширения в двигателе определяется положением поршня в нижней мертвой точке.
