- •2. Электрические цепи постоянного тока. Элементы э/цепи. Источники и потребители э/энергии. Граф изобр-е э/цепи. Идеальные элементы цепи и схемы их замещения. Линейные и нелинейные элементы.
- •4. Условные положительные направления эдс, токов и напряжений в схемах замещения. Пассивный и активный двухполюсники. Режимы работы двухполюника.
- •6. Законы Ома и Кирхгофа для цепей постоянного тока. Непосредственное применение этих законов к расчёту электрических цепей. Порядок составления уравнений по законам Кирхгофа. Баланс мощностей.
- •7. Методы расчёта сложных разветвлённых цепей постоянного тока. Взаимное преобразование схем соединений треугольником и звездой пассивных элементов цепи
- •10. Законы Ома и Кирхгофа для цепей переменного тока в комплексном выражении. Активная, реактивная и полная мощности. Треугольник мощностей. Коэффициент мощности и способы его повышения.
- •11. Принцип получения синусоидальной эдс. Устройство и принцип работы синхронного генератора однофазного переменного тока.
- •Вращение витка в равномерном магнитном поле
- •Получение синусоидальной эдс в генераторе переменного тока
- •12. Законы электромагнитной индукции Фарадея-Максвелла и Ампера. Явление самоиндукции и взаимоиндукции и их использование в электротехнических устройствах и электрических машинах.
- •Закон Ампера
- •Явление самоиндукции и взаимоиндукции.
- •Получение трехфазного тока
- •19.Мощность в трёхфазных цепях. Преимущества трёхфазных систем передачи электрической энергии.
- •20.Электромагнитные устройства. Магнитные цепи электротехнических устройств. Назначение магнитопровода. Неразветвленная и разветвленная магнитная цепь. Магнитотвердые и магнитомягкие материалы.
- •21. Расчёт магнитных цепей. Закон полного тока. Магнитодвижущая сила (мдс) и магнитное напряжение магнитной цепи. Закон Ома для магнитной цепи. Сопротивление магнитной цепи.
- •Идеализированный трансформатор
- •28. Электродвигатели постоянного тока (дпт). Назначение, устройство, принцип действия двигателя постоянного тока. Электрические схемы включения дпт.
- •29. Основы электропривода и электроснабжения. Назначение электропривода и режимы работы электродвигателей. Расчёт и выбор электродвигателей. Управление электроприводом.
- •30.Требования к пусковой и защитной аппаратуре электродвигателей. Нагрев и охлаждение двигателей. Механические и электромеханические характеристики двигателей.
- •31.Лифты и транспортно-подъёмное оборудование. Назначение, устройство и применение в строительном производстве.
- •32. Электрические измерения. Классификация электроизмерительных приборов. Расширение пределов измерения амперметров, вольтметров, ваттметров и счётчиков электрической энергии.
- •Классификация электроизмерительных приборов
- •35.Источники вторичного электропитания электронных устройств. Структурная схема (блок-схема) источника. Назначение и функциональные характеристики структурных элементов (блоков).
30.Требования к пусковой и защитной аппаратуре электродвигателей. Нагрев и охлаждение двигателей. Механические и электромеханические характеристики двигателей.
Требования к пусковой и защитной аппаратуре электродвигателей:
напряжение и номинальный ток аппаратов должны соответствовать напряжению и расчетному (длительному) току цепи;
номинальные токи плавких вставок предохранителей и расцепителей автоматических выключателей нужно выбирать, по возможности, близкими к расчетным токам электроприемника или линии;
аппараты защиты не должны отключать установку при перегрузках, возникающих в условиях нормальной эксплуатации, например при запуске короткозамкнутого электродвигателя;
При выборе пусковой и защитной аппаратуры учитывают условия окружающей среды, номинальный ток аппарата, разрывную мощность его контактов, частоту включений, допустимое значение тока короткого замыкания в защищаемых цепях и другие требования, предъявляемые к работе аппарата.
При работе любого электродвигателя часть поступающей к тему энергии затрачивается на потери, связанные с нагревом обмоток и магнитопроводов, трением в подшипниках и вращающихся частей о воздух. Хотя потери энергии в современных электродвигателях невелики, при их работе все же выделяется значительное количество тепла, что приводит к нагреву электродвигателей. Различают постоянные и переменные потери в электрических машинах.
На холостом ходу нагрев машин определяется постоянными потерями. По мере загрузки машины увеличиваются переменные потери и нагрев ее повышается.
Для максимального использования (по тепловым возможностям) всех применяемых в электродвигателе материалов необходимо, чтобы при полной нагрузке его отдельные части нагревались до температур, близких к предельно допустимым. С этой же целью используется искусственное охлаждение электродвигателей, позволяющее большую часть выделяющегося при работе машины тепла отдавать окружающей среде.
Двигатель в процессе охлаждения, стремится к температуре окружающей среды – этот период может быть очень длительным. Для практических целей считают двигатель остывшим полностью, если его температура отличается от температуры окружающей среды не более чем на 3.
Механической характеристикой электродвигателя называется зависимость его угловой скорости от вращающего момента ω = f(M).Здесь следует иметь ввиду, что момент М на валу двигателя независимо от направления вращения имеет положительный знак - момент движущий. Вместе с тем момент сопротивления Мс имеет знак отрицательный.
В качестве примеров на рис. приведены механические характеристики: 1 - синхронного двигателя; 2 – двигателя постоянного тока независимого возбуждения; 3 – двигателя постоянного тока последовательного возбуждения.
Электромеханической характеристикой двигателя постоянного тока называется зависимость скорости вращения от тока якоря.
Если подать напряжение на обмотку якоря при отсутствии тока на обмотке возбуждения, то магнитный поток будет равен нулю, а скорость будет стремиться к бесконечности. Такое явление называется разносом двигателя. Чтобы избежать разноса двигателя используются электродвигатели с параллельным возбуждением.
