- •4. Растворы.
- •4.1. Дисперсные системы. Основные характеристики дисперсных систем. Степень дисперсности. Классификация дисперсных систем. Гетерогенные и гомогенные дисперсные системы. Гетерогенные равновесия.
- •4.2. Фазовые равновесия. Фазы и компоненты. Фазовая диаграмма воды.
- •4.4. Растворимость газов, жидкостей и кристаллов в жидкостях. Влияние на растворимость природы компонентов раствора, температуры и давления. Насыщенные, ненасыщенные и пересыщенные растворы.
- •4.5. Различные способы выражения концентрации растворов и их взаимные пересчеты.
- •4.6. Растворы неэлектролитов.
- •4.8. Растворы электролитов.
- •4.10. Свойства растворов электролитов. Изотонический коэффициент, его связь со степенью диссоциации. Электрическая проводимость растворов электролитов.
- •4.11. Ионные реакции. Условия смещения ионных равновесий. Амфотерные электролиты. Произведение растворимости.
- •4.12. Электролитическая диссоциация воды. Водородный показатель рН. Индикаторы. Понятие о буферных растворах. Значение рН в технологических процессах.
- •5. Электрохимические процессы.
- •3. Реакция диспропорционирования
- •2) В нейтральной среде:
- •3) В щелочной среде:
- •5.5. Электролиз. Окислительно-восстановительные процессы при электролизе. Электролиз расплавов и водных растворов электролитов. Законы Фарадея. Применение электролиза в промышленности.
- •6.Радиоактивность. Изотопы и изобары. Виды излучений. Ядерные превращения. Ряды радиоактивных превращений. Ядерное деление и ядерный синтез.
- •Примеры изотопов, изобаров и изотонов среди природных нуклидов. (таблица)
3. Реакция диспропорционирования
(самоокисления, самовосстановления)- это процесс, в котором происходит одновременное увеличение и уменьшение степени окисления атомов одного и того же элемента.
Например
3K2MnO4 + 2H2O = 2KМnO4 + MnO2 + 4KOH,
где Мn(+6) является окислителем и восстановителем.
Характер окислительно-восстановительной реакции зависит от среды, в которой они протекают. Для создания кислой среды используют серную кислоту, а для создания щелочной среды – раствор гидроксида натрия.
При движении сверху вниз по группам увеличивается радиус атома, а, следовательно, уменьшаются окислительные свойства.
5.2. Влияние среды на протекание окислительно-восстановительных реакций. Окислительно-восстановительные потенциалы. Составление уравнений окислительно-восстановительных реакций. Вычисление эквивалентов в окислительно-восстановительных реакциях.
Применяют два метода составления уравнений ОВР: метод электронного баланса и метод полуреакций.
Метод электронного баланса: в методе электронного баланса сравнивают степени окисления исходных и конечных веществ, отражая их изменения в электронных уравнениях. Чтобы уравнять число отданных и принятых электронов, находят наименьшее общее кратное, с помощью которого получают коэффициенты для окислителя и восстановителя. Коэффициенты перед веществами, атомы которых не меняют степени окисления, находят подбором.
Например: составим уравнение реакции свинца с раствором нитрата серебра.
Запишем формулу исходных и конечных веществ реакции и найдём степени окисления элементов:
Pb + AgNO3 → Pb(NO3)2 + Ag .
Свинец, образуя ион свинца, отдаёт два электрона, его степень повышается от 0 до +2. Свинец - восстановитель. Ион серебра, присоединяя электрон, изменяет степень окисления от +1 до 0. Серебро - окислитель. Эти изменения выражаются электронными уравнениями:
Pb0 – 2е- = Pb+2 1 процесс окисления
2
Ag+1 + 1е- = Ag0 2 процесс восстановления
Pb0 + 2 Ag+1= Pb+2+ 2Ag0
Учитывая, что число электронов, теряемых восстановителем, должно быть равно числу электронов, присоединяемых окислителем, находим коэффициенты 1 и 2 при восстановителе и окислителе. Найденные коэффициенты позволяют перейти от схемы к уравнению реакции:
Pb + 2AgNO3= Pb(NO3)2 + 2Ag.
Метод полуреакций или ионно-электронный метод
Этот метод основан на составлении ионных уравнений для процессов окисления восстановителя и для реакций восстановления окислителя с последующим суммированием обоих уравнений в общее ионное уравнение.
Чтобы составить уравнение окислительно-восстановительной реакции методом полуреакций, необходимо:
1) составить ионно-молекулярную схему реакции, учитывая, что сильные электролиты записываются в виде ионов, а слабые электролиты (газы, осадки) - в виде молекул;
2) оставим в ионно-молекулярной схеме реакции ионы, содержащие элементы, меняющие степень окисления (окислитель, восстановитель) а также ионы Н+ и ОН-, характеризующие среду или молекулы воды;
3) составить электронно-ионные уравнения отдельно для процессов восстановления и окисления, руководствуясь следующими правилами:
• если процесс протекает в кислой среде, то в ту часть полуреакции, где меньше атомов кислорода, добавляют такое количество молекул воды, сколько не хватает кислорода, а в противоположную часть – соответствующее число ионов водорода Н+. В результате число атомов элементов правой и левой частей полуреакций должно быть одинаковым;
• если процесс протекает в щелочной среде, то в ту часть, в которой не хватает кислорода, добавляют в два раза больше ионов ОН-, чем не хватает кислорода, а в противоположную часть – соответствующее количество молекул воды;
• если процесс протекает в нейтральной среде, то в левую часть полуреакции всегда добавляют молекулы воды, а в правую - либо ионы Н+, либо ОН-.
На основании закона сохранения массы и энергии в левой и правой частях уравнения должно быть равенство числа частиц (ионов, атомов, молекул). Суммарное число и знак электрических зарядов слева и справа от знака равенства должны быть одинаковыми.
Например:
1) В кислой среде:
Рассмотрим реакцию восстановления перманганата калия по схеме
KMnO4 +Na2SO3 + H2SO4 → MnSO4 + Na2SO4 + K2SO4 + H2O
кислая среда
Запишем уравнение в ионно-молекулярном виде:
K(+)+(MnO4)-+2Na(+) +(SO3)2-+2H(+)+(SO4)2-→ Mn2+ +(SO4)2-+2Na(+) +(SO4)2-+2K+ +(SO4)2-+H2O.
Составляем ионно-молекулярную схему реакции, показывающую ионы, содержащие элементы, меняющие степень окисления и ионы среды:
(MnO4)- + (SO3)2- + H+ → Mn2+ + (SO4)2- + H2O.
Составляем схемы превращений ионов:
(SO3)2- → (SO4)(2-)
(MnO4)- → (Mn)(2+).
Недостаток кислорода восполним молекулой воды, т. к. среда кислая, и уравняем число атомов водорода:
(SO3)2- + H2O = (SO4)2- + 2H+
(MnO4)- + 8H+ = Mn2+ + 4H2O.
Сосчитаем заряды в левой и правой частях схемы и найдем число отданных и принятых электронов.
5 (SO3)2- + H2O - 2e- = (SO4)2- + 2 H+ процесс окисления
10 -2 0
восстановитель
2 (MnO4)- + 8H+ + 5e- = Mn2+ + 4H2O процесс восстановления
+7 +2
окислитель
Уравниваем число отданных и принятых электронов, найдя множители 2 и 5. Умножаем каждое уравнение на соответствующий множитель и почленно складываем их (электроны при этом сокращаются), получаем
5(SO3)2- + 5H2O +2(MnO4)- +16H+ = 5(SO4)2- +10H+ + 2Mn2+ +8H2O.
Приводим подобные члены:
5(SO3)2- + 2(MnO4)- + 6H+ = 5(SO4)2- + 2Mn2+ + 3H2O.
От полученного ионно-молекулярного уравнения переходим к полному молекулярному уравнению, при этом коэффициенты, находящиеся перед ионами, ставим перед молекулами, содержащими эти ионы:
5Na2SO3 + 2KMnO4 + 3H2SO4 = 5Na2SO4 + K2SO4 + 2MnSO4 + 3H2O.
