- •1.Элементы и углы резца
- •2.Правила техники безопасности при работе на сверлильных станках.
- •3.Первичные средства пожаротушения.
- •Виды первичных средств пожаротушения Огнетушащие вещества
- •Огнетушащие материалы
- •Пожарный ручной инструмент и пожарный инвентарь.
- •Пожарное оборудование.
- •1.Силы действующие на резец. Мощность резания
- •2.Технология обработки на сверлильных станках и оснастка.
- •3.Меры электробезопасности при работе на станках с чпу.
- •1.Основные типы токарных станков, их обозначение.
- •2. Устройство радиально-сверлильного станка. Кинематическая схема радиально-сверлильного станка. Радиально-сверлильные станки. Общие сведения.
- •Кинематическая схема радиально-сверлильного станка 2в56
- •Техническая характеристика радиально-сверлильного станка 2в56
- •Виды обработки, производимые на сверлильных станках
- •3.Промышленная санитария, органы контроля за состоянием промышленной санитарии.
- •1.Устройство токарно-винторезного станка. Кинематическая схема. Назначение токарно-винторезного станка 1к62 и общее устройство
- •Конструкция и характеристика работы основных узлов станка
- •2. Основные типы сверлильных станков, их обозначения.
- •3. Виды инструктажей по технике безопасности на производстве.
- •1. Вводный инструктаж.
- •2. Первичный инструктаж на рабочем месте.
- •3. Повторный инструктаж на рабочем месте
- •4. Внеплановый инструктаж
- •5. Целевой инструктаж
- •1.Приспособления для токарного станка.
- •2. Типовые узлы и элементы станков с числовым программным управлением: автоматическая коробка скоростей ( акс).
- •Понятие о программном управлении
- •Конструктивные особенности станков с чпу
- •3.Расследование несчастных случаев на производстве.
- •1.Обработка наружных цилиндрических и конических поверхностей на токарном станке.
- •Особенности обработки наружного конуса
- •Конические отверстия
- •Цилиндрические поверхности
- •2. Типовые узлы и элементы станков с числовым программным управлением: тиристорная схема управления двигателями постоянного тока.
- •3.Техника безопасности при работе на станках с чпу до начала работы. Требования по охране труда перед началом работы
- •1.Обработка отверстий на токарном станке.
- •2.Типовые узлы и элементы станков с числовым программным управлением: многоскоростные асинхронные двигатели.
- •Асинхронные машины общепромышленного применения
- •Электрошпиндели
- •3.Законодательство и органы надзора по охране труда в рф.
- •1.Нарезание резьбы на токарно-винторезных станках.
- •Нарезание резьбы резцами
- •Нарезание резьбы плашками и метчиками
- •Нарезание резьбы резьбонарезными головками
- •Контроль резьбы
- •2.Типовые узлы и элементы станков с числовым программным управлением: шаговый электродвигатель. Что такое шаговый двигатель?
- •Основы работы шагового двигателя
- •Режимы управления
- •Волновое управление или полношаговое управление одной обмоткой
- •Полношаговый режим управления
- •Полушаговый режим
- •Режим микрошага
- •Типы шаговых двигателей Шаговый двигатель с постоянным магнитом
- •Шаговый двигатель с переменным магнитным сопротивлением
- •Гибридный шаговый двигатель
- •Подключение обмоток
- •Биполярный двигатель
- •Униполярный двигатель
- •3.Первая помощь пострадавшему от электрического тока.
- •1.Контроль цилиндрических и конических поверхностей.
- •Контроль конических поверхностей
- •2. Типовые узлы и элементы станков с числовым программным управлением: регулирование скорости асинхронного двигателя с помощью преобразователя частоты. Регулирование скорости асинхронного двигателя
- •Регулирование скорости с помощью изменения активного сопротивления в цепи ротора
- •Регулирование скорости двигателя с помощью изменения напряжения питания
- •Регулирование скорости с помощью изменения частоты питания
- •Регулирование скорости ад изменением числа пар полюсов
- •3. Контроль микроклимата на производстве.
- •1.Контроль резьбы. Контроль резьбы
- •Резьбовые калибры: а) - предельная резьбовая роликовая скоба, б) - проходное кольцо, в) - резьбовой калибр, г) - непроходное кольцо
- •2.Тиристорные схемы регулярного скорости асинхронного двигателя. Тиристорный регулятор оборотов двигателя
- •3.Правила техники безопасности при работе на станках с чпу во время работы.
- •1.Настрой токарно-винторезного станка на нарезание метрической однозаходной резьбы.
- •2.Однофазный мостовой выпрямитель. Однофазный мостовой выпрямитель
- •3.Вентиляция и освещение на производстве.
- •1.Понятие о фрезерной обработке. Общие определения
- •Основные виды фрезерных работ
- •Область применения фрезерования
- •2. Типы токарных резцов. Токарные резцы
- •Конструкция токарного резца
- •Классификация резцов
- •Типы токарных резцов
- •Револьверно-автоматные резцы
- •Выбор токарных резцов
- •Заточка резцов
- •3.Виды и причины травм.
- •1.Основные типы фрезерных станков. Типы фрезерных станков и их назначение
- •Продольно-фрезерные
- •Копировально-фрезерные (объемно-фрезерные)
- •Шпоночные фрезерные
- •Фрезерные станки, оснащенные модулем чпу
- •2.Системы программного управления ( цпу, чпу).
- •3.Продолжительность рабочего времени и отдых на производстве.
- •1.Кинематическая схема фрезерного станка. Кинематика универсальных фрезерных станков
- •2.Трехфазный однополупериодный выпрямитель. Трёхфазные выпрямители(Схема Ларионова)
- •1.Режущий инструмент для фрезерного станка.
- •2.Трехфазный мостовой выпрямитель. Схемы трёхфазных (многофазных) выпрямителей Описание
- •Однополупериодный многофазный выпрямитель
- •Трёхфазный двухполупериодный выпрямитель
- •3.Термическая обработка металлов: закалка. Закалка металла
- •1.Инструментальная оснастка фрезерных станков.
- •2.Принцип работы тиристорного регулятора напряжения.
- •3. Правила техники безопасности при работе на станках с чпу в аварийных ситуациях.
- •1.Приспособления для установки и закрепления заготовок на фрезерных станках.
- •2.Бесконтактные коммутирующие устройства ( на тиристорах)
- •3.Меры электробезопасности при работе на станках с чпу .
- •1.Универсальная лимбовая делительная головка.
- •2. Система программного управления: цпу.
- •3.Техника безопасности при работе на станках с чпу по окончании работы.
- •1.Фрезерование плоских поверхностей и скосов.
- •2.Система программного управления: чпу
- •3.Техника безопасности при работе на станках с чпу до начала работы.
- •1.Обработка пазов на фрезерном станке. Фрезерование пазов
- •Особенности фрезерования шпоночных пазов
- •Фрезерование уступов
- •Разрезание заготовок
- •Контроль пазов, уступов и разрезанных заготовок
- •2.Особенности устройства станков с чпу. Маркировка.
- •Виды металлорежущего оборудования
- •Маркировка станков
- •Уровни автоматизации
- •Конструкция станков
- •3.Техника безопасности при работе на станках с чпу во время работы.
- •1.Фрезерование уступов. Разрезание заготовок на фрезерных станках. Как фрезеровать уступы
- •Отрезка заготовок. Нарезание глубоких пазов
- •2.Токарные станки с чпу.
- •3.Промышленная санитария. Промышленная санитария и личная гигиена
- •1.Основные типы шлифовальных станков.
- •2.Фрезерный станок с чпу.
- •3.Виды инструктажей по технике безопасности. Виды инструктажа по технике безопасности и сроки его проведения
- •1.Технология обработки деталей на плоскошлифовальном станке.
- •2.Многоцелевой станок с чпу. Многоцелевые станки с чпу.
- •3.Расследование несчастных случаев на производстве.
- •1.Технология обработки деталей на круглошлифовальных станках
- •2.Правила шлифовальных кругов. Балансировка шлифовальных кругов. Балансировка шлифовального круга на станке. Балансировочные станки.
- •3.Первая помощь пострадавшему от электрического тока.
- •1.Контроль обработанных внутренних поверхностей. Контроль микрогеометрии поверхностей и выявление поверхностных дефектов
- •2.Элементы и углы фрезы. Геометрия фрезы
- •3.Твердые сплавы.
- •Российские спечённые твёрдые сплавы, применяемые в современной мировой промышленности:
- •1.Обработка канавок. Отрезание заготовок на токарном станке. Обработка канавок и отрезка
- •Контроль наружных уступов, торцов и канавок.
- •2.Программоносители для станков с чпу. Запись-чтение программ.
- •3. Медные сплавы. Медь и сплавы на ее основе
- •Простые латуни
- •Специальные латуни
2.Типовые узлы и элементы станков с числовым программным управлением: многоскоростные асинхронные двигатели.
Асинхронные электродвигатели с короткозамкнутым ротором – одни из наиболее распространенных двигателей переменного тока. В приводах различных узлов в основном используют трехфазные асинхронные электродвигатели, которые подключают к трехфазной промышленной сети переменного тока. Ток, проходящий по обмоткам статора, создает вращающееся магнитное поле. Вращаясь вокруг ротора, магнитное поле пересекает проводники его обмотки, наводит в них ЭДС. Соответственно в коротко-замкнутом роторе начинает протекать ток. При взаимодействии тока ротора с вращающимся магнитным полем статора появляются силы (потокосцепление статора и ротора), заставляющие ротор двигаться вслед за магнитными полем. Создающийся вращающий электромагнитный момент пропорционален магнитному потоку поля статора и току ротора.
Асинхронные машины общепромышленного применения
ЭДС и частота в обмотке ротора зависят от скорости пересечения вращающим полем проводника обмотки ротора, т. е. от разности частоты вращения поля nо и ротора nр. Чем больше разность (n0 — nр), тем большая индуцируется э.д.с. и тем выше ее частота изменения. Следовательно, необходимым условием для возникновения в асинхронном двигателе вращающего момента является неравенство (асинхронность) частот вращения n0 и nр Именно поэтому двигатель и называется асинхронным (не синхронным). Разность частоты вращения поля статора и ротора характеризуется коэффициентом скольжения s = (n0 — nр) /n0.
Если асинхронная машина нормального исполнения, то при номинальном режиме работы скольжение должно быть в промежутке 0,01—0,1. С появлением нагрузки на валу двигателя оно повышается, что вызывает увеличение тока в обмотке ротора, а следовательно, и электромагнитного момента. Чем ниже величина скольжения, тем экономичнее работает двигатель. Вращающееся поле, которое создает обмотка статора, может быть двухполюсным, четырехполюсным и т. д. Число пар полюсов – определяют при проектировании обмотки статора. При одной и той же частоте тока в обмотке статора многополюсное поле будет вращаться медленнее, пропорционально числу пар полюсов, что часто используется при ступенчатом регулировании частоты вращения.
Важными эксплуатационными характеристиками асинхронных машин, работающих в приводах главного движения станков, являются их максимальная перегрузочная способность и кратность пускового момента (отношение максимального момента к номинальному).
Перегрузочной способностью Км называют отношение максимального момента Мтах,, развиваемого двигателем, к номинальному Мн. Это отношение составляет обычно Ки = Мтах/Мн = 1,8 — 2,5. Момент, развиваемый двигателем при пуске (nр= 0), называется пусковым моментом.
Отношение пускового момента к номинальному называют кратностью пускового момента Кп = Мпуск/Мн. Кратность пускового момента составляет 1,1 —1,8.
Чем выше перегрузочная способность Км, тем выше способность двигателя к перегрузкам. Больший пусковой момент Кп соответствует двигателям со значительным моментом нагрузки на валу.
Пуск асинхронного двигателя с короткозамкнутым ротором сопровождается довольно большим скачком пускового тока. Он иногда может в семь-десять раз превышать номинальный. Обычно двигатели малой мощности пускают прямым пуском.К числу таких двигателей относятся и двигатели приводов металлорежущих станков. Пуск мощных асинхронных приводов сопровождается большой просадкой напряжения, поэтому их пуск производят через различные пусковые устройства или пускают на холостом ходу.В некоторых механизмах иногда требуется плавный разгон двигателя. В этом случае наиболее эффективен пуск с помощью тиристорного блока управления, позволяющего плавно увеличивать частоту питающего напряжения.
Скорость вращения асинхронных двигателей с короткозамкнутым ротором как правило регулируют либо изменением числа пар полюсов, либо изменяют частоту и величину питающего напряжения на статоре машины. Первый способ позволяет довольно просто осуществить лишь ступенчатое регулирование, причем чем больше число пар полюсов обмотки, тем ниже частота вращения. При втором способе достигается плавность регулирования в широком диапазоне, но требуются специальные сложные и дорогостоящие электронные системы управления.
На станках применяют в основном общепромышленные асинхронные двигатели единых серий 4А и АИ (рис. 2.4).
Диапазон мощности выпускаемых двигателей единых серий полностью обеспечивает все потребности станкостроения. В состав этих серий также входят асинхронные двигатели специального исполнения: с повышенной точности по установочным раз мерам; со встроенным электромагнитным тормозом; с повышенным пусковым моментом.
В маркировке асинхронного двигателя указывается его конструктивное исполнение, материал подшипниковых щитов и станины, высота оси вращения, установочные размеры, число пар полюсов и климатическое исполнение. Например, 4А80А2УЗ — асинхронный электродвигатель четвертой серии (4А). Тип исполнения — закрытое (А), высота оси вращения 80 мм, количество пар полюсов — два (2) исполнение для умеренного климата (УЗ).
Во многих станках для подачи масла и охлаждающих жидкостей широко применяются электронасосы серий П и ПА, объединяющие в едином корпусе центробежный насос и нерегулируемый приводной асинхронный двигатель. Мощность и соответственно габаритные размеры электронасосов зависят от количества жидкости, подаваемой в единицу времени. Обычно их мощность составляет 0,1—0,6 кВт.
