
- •Молекулярная биофизика.
- •1.1. Физическая иерархия биосистем.
- •1.2. Атомарный состав живых систем.
- •1.3. Аминокислоты.
- •1.4. Нуклеиновые кислоты (нк).
- •Общая схема строения цепи:
- •1.5. Углеводы и липиды.
- •Функции полисахаридов:
- •1.6. Кофакторы. Витамины. Гормоны.
- •2. Пространственная организация биополимеров.
- •2.1. Объемные взаимодействия и переходы глобула - клубок.
- •2.2. Гибкость биополимеров
- •2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.
- •2.4. Условия существования клубка и глобулы.
- •2.5. Различные типы взаимодействия в макромолекулах.
- •2.6. Ван-дер-ваальсовые (вв) силы.
- •2.7. Ориентационное взаимодействие.
- •2.8. Индукционное взаимодействие.
- •2.9. Дисперсионное взаимодействие.
- •2.10. Водородная связь и электростатические взаимодействия.
- •2.11. Физическая природа водородной связи.
- •2.12. Электростатические взаимодействия.
- •3.Элементы биофизики белка.
- •3.1. Биологические функции белков.
- •3.2. Основные задачи биофизики белка
- •3.3. Конформация полипептидной цепи.
- •3.4. Структура воды и гидрофобные взаимодействия.
- •3.5. Гидрофобные взаимодействия и структуры белков.
- •3.6. Связывание лигандов с макромолекулами.
- •Уравнение Хилла
- •3.7.Гемолиз
2.9. Дисперсионное взаимодействие.
Дисперсионное или поляризационное взаимодействие наблюдается между молекулами, которые не обладают постоянным дипольным моментом. Они обусловлены внешними слабосвязанными электронами. Природа дисперсионных взаимодействий носит квантомеханический характер и является результатом появления линейных диполей, возникающих в результате движения электронов в молекулах, но обладающих постоянным дипольным моментом.
Энергия притяжения, обусловленная дисперсионными силами:
,
где
- частота колебаний (вращения)
электрона; f - частотный фактор {сравним
с моментом инерции}.
ТАБЛИЦА. Относительная роль разных видов сил ВВ для отдельных молекул.
Вещество |
|
Р [D] |
Uор |
Uинд*105 Дж |
Uдисп |
H |
0.67 |
0.00 |
0.00 |
0.00 |
6.10 |
O2 |
1.51 |
0.00 |
0.00 |
0 |
39.80 |
H2O |
1.48 |
1.84 |
190.00 |
10.00 |
47.00 |
NH3 |
2.24 |
1.50 |
84.00 |
10.00 |
70.00 |
HCl |
2.63 |
2.63 |
19.00 |
5.40 |
111.00 |
Суммарное ВВ взаимодействие есть Uориент+Uинд+Uдисперс,и для полимеров составляет от 4 до 100 кДж/моль. Силы ВВ лежат в основе некоторых биоструктур и, в частности, биспиральных полинуклеотидов. Упаковка плоских молекул азотистых оснований в вертикальной пачке обеспечивается вертикальными взаимодействиями (стекинг), в которых сила ВВ вносит основной вклад.
2.10. Водородная связь и электростатические взаимодействия.
Наряду с силами Ван-дер-Ваальса, водородная связь и электростатические взаимодействия играют важнейшую роль в стабилизации макромолекулярных структур. В частности, водородная связь стабилизирует внутреннюю структуру полинуклеотидных цепей. Водородная связь осуществляется между атомом водорода одной молекулы и электроотрицательным атомом кислорода (О), азота (N), фтора (F), или хлора (Cl), принадлежащего другой молекуле (известны случаи образования и внутримолекулярных водородных связей). Природа водородной связи сложна и не сводится только к электростатическому притяжению, хотя оно и дает основной вклад в энергию водородной связи. Наряду с взаимодействиями Ван-дер-Ваальса и электростатическими силами, в энергию водородной связи (UH) вносит вклад энергия делокализации (Uделок.) 2-хэлектронов связи (А-Н) и неподеленной пары электронов другого атома. (А - какой-либо из 4-хэлектроотрицательных элементов). Энергия делокализации приводит к тому, что длина связи уменьшается. Например, для димера муравьиной кислоты:
Для большинства полимеров энергия
водородной связи оценивается:
Uн=Uэл/стат+Uдисп+Uделок+Uотталк, =>
U=-25.2-12.6-33.6+35.3=-36.1 кДж/моль.
Как правило, для большинства биополимеров Uнсвязи лежит в пределах 1235 кДж/моль.
2.11. Физическая природа водородной связи.
Экспериментальные и квантомеханические исследования показывают, что потенциальная энергия водородной связи имеет вид асимметричной кривой с двумя минимумами, локализованными вблизи отрицательных атомов, между которыми протон совершает туннельные переходы.
Потенциальная энергия водородной связи, соответствующая локализации протона около 2-х различных атомов азота.
Проявление водородной связи в спектрах, приводя к расширению инфракрасных полос поглощения А - Н групп, частоты колеблющихся групп, содержащих водородную связь, снижаются по отношению к их свободному состоянию.