Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Підручник по молекулярній біофізиці .doc
Скачиваний:
115
Добавлен:
09.09.2014
Размер:
450.05 Кб
Скачать

2.2. Гибкость биополимеров

Сворачиваемость цепи в клубок определяется термодинамической гибкостью: чем больше гибкость, тем меньше h2. В растворе наиболее вероятная конформация полимера - свернутый клубок, в котором энтропия системы максимальна. При растяжении полимеров происходит развертывание клубка и уменьшение размера возможных конформаций, что сопровождается уменьшением энтропии.

,

где w- термодинамическая вероятност,- константа Больцмана.

.

Cила, необходимая для растяжения полимерной цепи:

,

где U - внутренняя энергия. В первом приближении внутренняя энергия не зависит от конформаций, поэтому:

(сила линейно зависит от размеров)

2.3. Объёмное взаимодействие. Переходы глобула - клубок в биополимерах.

Геометрические размеры задаются с помощью среднеквадратичного расстояния биополимера - h2. Внутренняя пространственная структура задаётся пространственным распределением плотности звеньев. Вследствие объёмного взаимодействия, число звеньев в пространстве может меняться от точки к точке.

В полимерных нитях, вследствие взаимосвязанности звеньев, изменение плотности в одной точке пространства связано с изменением плотности в другой точке, то есть существует пространственная корреляция плотности. Если в макромолекуле отсутствует объёмное взаимодействие, то она не имеет достоверной пространственной структуры. В этом состоянии флуктуация (изменение вероятности) плотности имеет значение того же порядка, что и сама плотность. Такое состояние носит название клубка. Радиус корреляции, то есть характерное расстояние, в пределах которого плотность звеньев резко меняется, становится того же порядка, что и размеры макромолекулы R:

(~R, R~,).

Наличие объёмных взаимодействий может привести к такому состоянию, в котором флуктуация плотности мала по сравнению с самой плотностью. Такое плотное образование называется глобулой. В нем радиус корреляции флуктуации плотности намного меньше размеров молекулы<<R. Глобула в отличие от клубка обладает компактной пространственной структурой. Сердцевина большой глобулы примерно однородна, с постоянной концентрацией звеньевn0.

2.4. Условия существования клубка и глобулы.

Вследствие объёмных взаимодействий сблизившиеся участки могут притягиваться или отталкиваться. Повышение температуры приводит к увеличению отталкивания между мономерами, а понижение - к сближению. Существует температура, при которой отталкивание компенсируется притяжением. Эта температура называется -точкой или- температурой. В этой точке объёмное взаимодействие отсутствует, и макромолекула представляет собой клубок с размерами порядкаl*N1/2. Клубок сохраняется при повышении температуры выше точки. В области t>из-за увеличения сил отталкивания размеры клубка возрастают, т.е. R>l*N1/2, тогда линейные размеры макромолекулы можно выразить формулой

(- характерный размер без учета объёмного взаимодействия,- коэффициент набухания молекулы.

В области ,>1 и=1 при= t. В сильных растворителях притяжение электронов цепи и растворителя больше, чем звеньев цепи, что равносильно повышению их взаимного отталкивания, т.е.>1. При температурах t <во взаимодействиях преобладают силы притяжения, которые могут привести к конденсации клубка в плотную, слабо флуктуирующую глобулу. Эта глобула стабилизируется самосогласованно со сжимающим полем, обусловленным силами притяжения между мономерами. Примером перехода глобулы в клубок может служить зависимость вязкости раствора полиглутаминовой кислоты от её кислотности.

В реальных макромолекулах объёмное взаимодействие в отсутствие внешнего воздействия создаёт самосогласованное поле, приводящее к образованию глобулы. Характер распределения плотности имеет другой вид:

Профиль плотности - размытые ступеньки, в сердцевине - постоянная концентрация звеньев n0. Для данного графика R~N1/3, - радиус корреляции.