- •«Физика высокотемпературных процессов»
- •1.1. Квазинейтральность и разделение зарядов
- •1.2. Электростатическое экранирование
- •1.3. Классификация видов плазмы
- •2.1. Температура плазмы
- •2.2. Магнитное давление
- •3.1. Расширяющаяся Вселенная
- •3.2. Вселенная в прошлом
- •3.3. Баланс энергий в современной Вселенной
- •3.4. Темная материя
- •3.5. Темная энергия
- •4.1. Движение отдельных заряженных частиц и их потоков
- •4.2. Движение частиц в электрическом полеE0
- •4.3. Движение частиц в магнитном поле н0
- •4.4. Дрейфы в магнитных полях
- •4.5. Электрический дрейф
- •4.6. Дрейф в скрещенных полях
- •4.7. Инерционный и поляризационный дрейфы
- •5.1. Столкновения частиц в плазме
- •6.1. Тепловая и кулоновская энергия плазмы
- •6.2. Кулоновские поправки к свободной энергии и давлению плазмы
- •6.3. Равновесие ионизации
- •6.4. Вывод формулы Саха из квазиклассической статистики
- •7.1. Плазма как сплошная среда
- •7.2. Идеальная проводимость и дрейфовое движение
- •7.3. Вмороженное поле
- •7.3. Равновесие плазмы в магнитном поле
- •7.4. Примеры равновесия плазмы в магнитном поле. Токамак
- •7.5. Модель двух жидкостей
- •7.6. Проводимость плазмы
- •7.7. Классическая и бомовская диффузия
- •7.8. Амбиполярная диффузия слабоионизированной плазмы поперек магнитного поля
- •8.1. Основные понятия и определения
- •8.2. Волны в плазме без магнитного поля
- •8.3. Простейшие случаи распространения волн при наличии магнитного поля
- •8.4. Магнитогидродинамические волны
- •8.5. Дисперсия вблизи циклотронных частот
- •8.6. Магнитный звук
- •8.7. Уравнения гидродинамического приближения
- •8.8. Скорость звука
- •8.9. Плазменные волны и ионный звук
- •8.10. Тензорные характеристики горячей плазмы и пространственная дисперсия
- •8.11. Самосогласованное поле
- •8.12. Кинетическая теория плазменных волн
- •8.13. Проблема равновесия
- •8.14. Классификация плазменных неустойчивостей
- •8.14.1. Гидродинамические неустойчивости
- •8.14.2. Кинетические неустойчивости
- •8.14.3. Электростатические неустойчивости
- •8.14.4. Электромагнитные неустойчивости
- •8.15. Методы исследования устойчивости
- •8.16. Пучковая неустойчивость
- •8.17. Резонансное взаимодействие волн и частиц (квазилинейная теория)
2.1. Температура плазмы
Термодинамика
изучает свойства систем, находящихся
в состоянии теплового, или термического,
равновесия. Важнейшей характеристикой
такой системы является ее температура.
Понятие температуры имеет смысл только
при наличии хотя бы частичного равновесия.
В статистической физике температура
определяется как величина, обратно
пропорциональная модулю так называемого
канонического распределения. Если
вероятность нахождения системы в
состоянии с энергией εi
пропорциональна
, то температура Т определяется из
условия
(4.1)
Обычно в качестве множителя пропорциональности вводится постоянная Больцмана k
(4.2)
Определенная
таким образом температура имеет
собственную размерность: она измеряется
в градусах (обычно по шкале Кельвина).
В физике плазмы принято полагать
множитель пропорциональности в формуле
(4.1) равным единице, т. е. определять
температуру как величину, обратную
модулю распределения. Определенная
таким образом температура имеет
размерность энергии. Поэтому ее называют
температурой в энергетических единицах.
В дальнейшем везде, где это специально
не оговорено, мы будем под температурой
понимать именно температуру в
энергетических единицах. Согласно
закону равнораспределения энергии, она
равна средней энергии, приходящейся на
две степени свободы классического
идеального газа. При измерении температуры
в энергетических единицах вероятность
состояния с энергией εi
пропорциональна величине
.
Удобной для физики плазмы энергетической единицей температуры является электронвольт (эв):
1 эв =1,6·10-12 эрг= 11600° К.
Для горячей плазмы единицей температуры часто служит килоэлектронвольт (кэв).
Плазма имеет одну определенную температуру, только если она находится в состоянии полного термодинамического равновесия. Очень часто в плазме приходится иметь дело с частичным термодинамическим равновесием. Так, обмен энергиями электронов с ионами происходит гораздо медленнее, чем обмен между частицами, близкими по массе. Поэтому в не слишком плотной плазме может длительное время существовать состояние, когда она характеризуется двумя температурами: электронной Те и ионной Тi. Плазму с Те = Ti называют изотермической. Получение ее в обычных условиях эксперимента — задача довольно сложная.
Если ускорение частиц происходит под действием электромагнитных полей или ударных волн, то может не быть и частичного равновесия. В таких случаях теряют смысл даже электронная и ионная температуры. Иногда в неравновесной плазме температурой предлагают называть среднюю энергию, приходящуюся на две степени свободы частицы. Однако в плазме с несколькими сортами ионов при этом может оказаться, что разные ионы будут иметь разные температуры.
В ударной волне все частицы набирают одинаковую скорость и, следовательно, «температура» частиц данного рода может возрастать с их массой.
(источник: Д.А. Франк-Каменецкий, Лекции по физике плазмы, гл. 2, §1)
2.2. Магнитное давление
Часто
плазма находится в магнитном поле,
которое либо проникаетв глубь нее, либо
окружает снаружи. В статическом магнитном
поле на поверхность, ограничивающую
магнитный поток, действует давление
дин/см2.
Обычно плазма диамагнитна, поэтому она
выталкивает приложенное к ее поверхности
магнитное поле. Это означает, что
магнитное давление
может
уравновесить кинетическое давление
плазмы р = nkT
на границе плазма — магнитное поле.
При
>
р плазму можно сжать добольшей плотности
и тем самым увеличить ее температуру.В
тех случаях, когда магнитное поле
проникает в плазму, часто пользуются
параметром β (плазменное бета), равным
отношению локальных значений давления
плазмы и магнитного поля:
(5.1)
В равновесномпереходном слое на плоской границе плазма — магнитное поле условиепостоянства давления имеет вид
(5.2)
(источник:Н.Кролл, А.Трайвелпис, Основы физики плазмы, гл.1, §6)
3. Плазменные состояния в ранней Вселенной. Большой взрыв. Понятие о стандартной модели Вселенной. Темная материя и темная энергия. Кварк-глюонная плазма. Эпоха космической инфляции. Эпоха рекомбинации ранней Вселенной. Реликтовое излучение.
