- •1. Теоретические основы органической химии.
- •2. Изомерия органических соединений:
- •1. Структурная изомерия
- •2. Пространственная изомерия (стереоизомерия)
- •3. Классификация химических реагентов и реакций.
- •4. Кислоты и основания:
- •5. Алифатические, алициклические и ароматические углеводороды: Гомологический ряд
- •Изомерия
- •Номенклатура
- •6. Химические свойства алканов: реакции галогенирования (хлорирование, бромирование, иодирование, фторирование).
- •Энергетика цепных свободнорадикальных реакций галогенирования.
- •Нитрование (м.И. Коновалов),
- •Сульфохлорирование
- •Окисление.
- •Селективность радикальных реакций и относительная стабильность алкильных радикалов.
- •Термический и каталитический крекинг.
- •Ионные реакции алканов (дейтероводородный обмен и галогенирование и нитрование в суперкислой среде).
- •7. Алкены. Гомологический ряд Структурная изомерия алкенов
- •Пространственная изомерия алкенов
- •Номенклатура
- •Геометрическая изомерия (цис, транс и z, e номенклатура).
- •Природа двойной связи.
- •Молекулярные орбитали этилена.
- •Виттига
- •Стереоселективное восстановление алкинов.
- •8. Химические свойства алкенов. Ряд стабильности алкенов, выведенный на основе теплот гидрирования. Теплота гидрирования и устойчивость алкенов
- •Гетерогенное и гомогенное гидрирование алкенов.
- •Стерео и региоселективность. Правило в.В. Марковникова, индуктивный и мезомерный эффекты.
- •Галогенирование: механизм, стереохимия.
- •Процессы, сопутствующие АdE реакциям: сопряженное присоединение, перегруппировки промежуточных карбокатионов.
- •Гидрогалогенирование: понятие о би- и тримолекулярных механизмах.
- •Гидратация. Промышленный метод синтеза этанола и пропанола-2.
- •Гидрокси и алкоксимеркурирование.
- •Метатезис алкенов.
- •Регио и стереоселективное присоединение гидридов бора.
- •Региоспецифические гидроборирующие реагенты. Превращение борорганических соединений в алканы, спирты, алкилгалогениды.
- •Вопрос 9. Алкины
- •Термоокислительный крекинг
- •2. Гидрогалогенирование (присоединение галогеноводорода).
- •3. Гидратация (присоединение воды) алкинов.
- •1. Димеризация
- •2. Тримеризация
- •Гидроборирование[
- •Натуральные и синтетические каучуки
- •Стереохимия реакции дильса-альдера
- •Область применения реакции
- •11. Циклоалканы и их производные.
- •Напряжение Ван-дер-Ваальса.
- •Напряжение трансаннулярное (напряжение Прелога).
- •Напряжение угловое (ангулярное) или байеровское напряжение.
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Получение
- •Получение циклопентанов
- •Получение циклогексанов
- •Классификация[
- •Значение и применение
- •12. Арены.
- •Аннулены
- •Строение
- •Получение
- •Химические свойства
- •Критерии ароматичности.
- •Окисление аренов
Строение
Пиррол - 6-электронные-избыточные системы, образованные за счет электронов двойных связей и неподеленной пары электронов гетероатома, причем 6-электронов приходятся на пять атомов кольца, что существенно повышает электронную плотность на каждом кольцевом атоме. 6 р-электронов образуют единое электронное облако (как в бензоле).
Получение
1) Дегидратационная циклизация 1,4-диоксосоединения. Промежуточным продуктом в синтезе пиррола является имин:
2) Перегонка имида янтарной кислоты с цинковой пылью:
3) Пропускание аммиака и паров 1,4-бутиндиола над смесью оксидов алюминия (95%) и тория (5%) при 300 ºС:
4) Получение гетероциклов реакцией Юрьева - взаимным превращением фурана, пиррола и тиофена друг в друга
Химические свойства
1. Кислотно-основные превращения
1.1 Кипячение со спиртовым гидроксиламином превращает многие производные пиррола в диоксимы 1,4-дикетонов:
1.2 Пиррол является слабой кислотой и реагирует с калием и щелочами, образуя соль пиррола:
2. Реакции присоединения
2.1 При восстановлении пиррола цинком в уксусной кислоте образуется пирролин (2,5-дегидропиррол), а при гидрировании над платиной образуется пирролидин:
2.2 Диеновый синтез. Реакция Дильса-Альдера. Например, с малеиновым ангидрирод он образует ангидрид 2-пирил-янтарной кислоты:
2.3 Окисление
3. Реакции замещения
3.1 Галогенировапние
3.2 Нитрование
-нитропроизводное.Для пиррола нитрование ведется в пиридине ацетилнитратом. Всегда начальный продукт -
3.3 Сульфирование
Пиррол сульфируется – комплексом SO3-сульфокислоты, связанные с пиридином:с пиридином в пиридине. В первую очередь образуются
3.4. Ацилирование
Ацилирование пиррола осуществляют ангидридами кислот, при катализе хлористым цинком и оловом.
3.5. Реакции с хлорной ртутью.
-положение:Для всех пятичленных гетероциклов характерна реакция и хлоридом ртути с замещением водорода в
4. Расширение цикла
5. Реакции замены гетероатома.
Фуран
Фуран проявляет также св-ва диена и может участвовать в диеновом синтезе, напр.:
В случае менее активных диенофилов, напр. акролеина, имеет место заместительное присоединение:
и многие его замещенные легко вступают в р-ции металлирования, что используют в препаративных целях, напр, для синтеза сульфидов:
В лаборатории фуран обычно получают декарбоксилировани-ем пирослизевой к-ты, в пром-сти - декарбонилированием фурфурола:
Тиофен
ПИРИДИН
Пиридин выделяют гл. обр. из кам.-уг. смолы (содержание ок. 0,08%), продуктов сухой перегонки дерева,торфа или кости. Синтетически он м. б. получен след. р-циями:
Пиридин проявляет свойства, характерные для третичных аминов: образует N-оксиды, соли N-алкилпиридиния, способен выступать в качестве сигма-донорного лиганда.
В то же время пиридин обладает явными ароматическими свойствами. Однако наличие в кольце сопряжения атома азота приводит к серьёзному перераспределению электронной плотности, что приводит к сильному снижению активности пиридина в реакциях электрофильного ароматического замещения по сравнению с бензолом. В таких реакциях реагируют преимущественно мета-положения кольца.
Для пиридина характерны реакции ароматического нуклеофильного замещения, протекающие преимущественно по мета- положениям кольца. Такая реакционная способность свидетельствует о электроннодефицитной природе пиридинового кольца, что может быть обобщено в следующем эмпирическом правиле: реакционная способность пиридина как ароматического соединения примерно соответствует реакционной способности нитробензола.
