- •1. Теоретические основы органической химии.
- •2. Изомерия органических соединений:
- •1. Структурная изомерия
- •2. Пространственная изомерия (стереоизомерия)
- •3. Классификация химических реагентов и реакций.
- •4. Кислоты и основания:
- •5. Алифатические, алициклические и ароматические углеводороды: Гомологический ряд
- •Изомерия
- •Номенклатура
- •6. Химические свойства алканов: реакции галогенирования (хлорирование, бромирование, иодирование, фторирование).
- •Энергетика цепных свободнорадикальных реакций галогенирования.
- •Нитрование (м.И. Коновалов),
- •Сульфохлорирование
- •Окисление.
- •Селективность радикальных реакций и относительная стабильность алкильных радикалов.
- •Термический и каталитический крекинг.
- •Ионные реакции алканов (дейтероводородный обмен и галогенирование и нитрование в суперкислой среде).
- •7. Алкены. Гомологический ряд Структурная изомерия алкенов
- •Пространственная изомерия алкенов
- •Номенклатура
- •Геометрическая изомерия (цис, транс и z, e номенклатура).
- •Природа двойной связи.
- •Молекулярные орбитали этилена.
- •Виттига
- •Стереоселективное восстановление алкинов.
- •8. Химические свойства алкенов. Ряд стабильности алкенов, выведенный на основе теплот гидрирования. Теплота гидрирования и устойчивость алкенов
- •Гетерогенное и гомогенное гидрирование алкенов.
- •Стерео и региоселективность. Правило в.В. Марковникова, индуктивный и мезомерный эффекты.
- •Галогенирование: механизм, стереохимия.
- •Процессы, сопутствующие АdE реакциям: сопряженное присоединение, перегруппировки промежуточных карбокатионов.
- •Гидрогалогенирование: понятие о би- и тримолекулярных механизмах.
- •Гидратация. Промышленный метод синтеза этанола и пропанола-2.
- •Гидрокси и алкоксимеркурирование.
- •Метатезис алкенов.
- •Регио и стереоселективное присоединение гидридов бора.
- •Региоспецифические гидроборирующие реагенты. Превращение борорганических соединений в алканы, спирты, алкилгалогениды.
- •Вопрос 9. Алкины
- •Термоокислительный крекинг
- •2. Гидрогалогенирование (присоединение галогеноводорода).
- •3. Гидратация (присоединение воды) алкинов.
- •1. Димеризация
- •2. Тримеризация
- •Гидроборирование[
- •Натуральные и синтетические каучуки
- •Стереохимия реакции дильса-альдера
- •Область применения реакции
- •11. Циклоалканы и их производные.
- •Напряжение Ван-дер-Ваальса.
- •Напряжение трансаннулярное (напряжение Прелога).
- •Напряжение угловое (ангулярное) или байеровское напряжение.
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Получение
- •Получение циклопентанов
- •Получение циклогексанов
- •Классификация[
- •Значение и применение
- •12. Арены.
- •Аннулены
- •Строение
- •Получение
- •Химические свойства
- •Критерии ароматичности.
- •Окисление аренов
Конформации циклогексана
Если молекула циклогексана будет иметь плоское строение, то валентные углы между атомами углерода будут отличаться от нормальных валентных углов на 5016 , а следовательно, в молекуле будет иметь место угловое напряжение. Атомы водорода при этом будут находиться в невыгодном заслоненном положении, что будет приводить к значительному торсионному напряжению.
Понятно, что молекула циклогексана стремится принять такую конфигурацию, в которой бы эти виды напряжений отсутствовали и молекула была бы более устойчивой.
Для циклогексана существует две конформации без углового напряжения. Валентные углы в них равны 109028 . Эти конформации получили название «кресло» и «ванна»:
Кресло Ванна
Кресло Ванна
Однако циклогексан и большие циклы имеют неплоское строение. В рассматриваемой молекуле циклогексана сохраняются обычные валентные углы при условии его существования в двух конформациях "кресла" и "ванны". Конформация "кресла" менее напряжена, поэтому циклогексан существует преимущественно в виде конформеров IиIII, причем цикл претерпевает непрерывную инверсию (inversio– с латинского переворачивание, перестановка) с промежуточным образованием конформераII:
ось симметрии II III I
Двенадцать связей C–H, которые имеются у циклогексана в конформации "кресла", делятся на два типа. Шесть связейнаправлены радиально от кольца к периферии молекулы и называются экваториальными связями (e- связи), остальные шесть связей направлены параллельно друг другу и оси симметрии и называются аксиальными (a- связи). Три аксиальные связи направлены в одну сторону от плоскости цикла, а три – в другую (имеется чередование: вверх-вниз)."
Четырехчленный цикл, в отличие от трехчленного, все же обладает незначительной гибкостью. Валентные углы искажены меньше, чем в трехчленном цикле, несколько ниже и угловое напряжение. Один из углеродных атомов циклобутана выходит из плоскости, что приводит к уменьшению торсионного напряжения цикла.
В пятичленном цикле практически отсутствует угловое напряжение (отклонение внутренних валентных углов от тетраэдриче-ского составляет менее 1°). Однако в плоском пятичленном цикле связи С—Н находятся в заслоненной конформации, что обусловливает значительное торсионное напряжение. Каждый из пяти углеродных атомов циклопентана, стремясь уменьшить торсионное напряжение в цикле, поочередно выходит из плоскости, в которой расположены четыре оставшихся атома углерода. Цикл находится в непрерывном волнообразном движении — псевдовращении. Эта неплоская осциллирующая структура называется кон-формацией «конверта». В конформации «конверта» угловое напряжение увеличивается, однако это в полной мере компенсируется снижением торсионного напряжения молекулы.
Если представить шестичленный цикл плоским, то его внутренние валентные углы должны быть равными 120°. Это обусло
«банановая» []
гис. 1.1. образование
«банановых» связей в молекуле циклопропана
Углеводороды
вили бы ^ийчиїсльпис угловое ийирижсиис. следует иімсішь, 41U
в плиский структуре пиявляются взаимидействия, связанные с заслонением С—Н-связей, ти есть тирсиинние напряжение.
Однаки циклигексан не является плиский структурий и существует без углового напряжения, так как все валентные углы в нем тетраэдрические (109° 28').
До недавнего времени считали, чти наиболее устойчивыми структурами циклигексана являются две изомерные конфирмации, взаимипревращающиеся друг в друга за счет пивирита викруг ст-связей без их разрыва: «кресла» С (от англ. chair — кресло) и «ванны» В (от англ. boat — лодка).
СВ
Более устончивоН является копформация «кресло», так как ли-шепа торсиоппого папряжепия (все атомы углерода и водорода паходятся в заторможеппон копформации). В копформации «вап-па» происходит заслопепие связен, расположеппых вдоль двух параллельпых боковых стороп молекулы, что обусловливает тор-сиоппое папряжепие.
В пастоящее время с помощью физико-химических методов исследовапия устаповлепо, что циклогексап может существовать в различпых копформациях. «кресло», теист-форма (искажеппая ваппа), «полукресло», «ваппа». Второн по устончивости является теист-форма.
ипа образуется в результате «скручивапия» копформации
«ваппа» в продольпом паправлепии, что умепьшает папряжепие в цикле.
В обычпых условиях преобладающая часть молекул циклогек-сапа (99,9 \%) существует в копформации «кресло». В результате вращепия вокруг углерод-углеродпых связен одпа копформация «кресло» переходит в другую, эпергетически равпоцеппую. Такон процесс пазывают и п в е р с и е н ц и к л а.
