- •1. Теоретические основы органической химии.
- •2. Изомерия органических соединений:
- •1. Структурная изомерия
- •2. Пространственная изомерия (стереоизомерия)
- •3. Классификация химических реагентов и реакций.
- •4. Кислоты и основания:
- •5. Алифатические, алициклические и ароматические углеводороды: Гомологический ряд
- •Изомерия
- •Номенклатура
- •6. Химические свойства алканов: реакции галогенирования (хлорирование, бромирование, иодирование, фторирование).
- •Энергетика цепных свободнорадикальных реакций галогенирования.
- •Нитрование (м.И. Коновалов),
- •Сульфохлорирование
- •Окисление.
- •Селективность радикальных реакций и относительная стабильность алкильных радикалов.
- •Термический и каталитический крекинг.
- •Ионные реакции алканов (дейтероводородный обмен и галогенирование и нитрование в суперкислой среде).
- •7. Алкены. Гомологический ряд Структурная изомерия алкенов
- •Пространственная изомерия алкенов
- •Номенклатура
- •Геометрическая изомерия (цис, транс и z, e номенклатура).
- •Природа двойной связи.
- •Молекулярные орбитали этилена.
- •Виттига
- •Стереоселективное восстановление алкинов.
- •8. Химические свойства алкенов. Ряд стабильности алкенов, выведенный на основе теплот гидрирования. Теплота гидрирования и устойчивость алкенов
- •Гетерогенное и гомогенное гидрирование алкенов.
- •Стерео и региоселективность. Правило в.В. Марковникова, индуктивный и мезомерный эффекты.
- •Галогенирование: механизм, стереохимия.
- •Процессы, сопутствующие АdE реакциям: сопряженное присоединение, перегруппировки промежуточных карбокатионов.
- •Гидрогалогенирование: понятие о би- и тримолекулярных механизмах.
- •Гидратация. Промышленный метод синтеза этанола и пропанола-2.
- •Гидрокси и алкоксимеркурирование.
- •Метатезис алкенов.
- •Регио и стереоселективное присоединение гидридов бора.
- •Региоспецифические гидроборирующие реагенты. Превращение борорганических соединений в алканы, спирты, алкилгалогениды.
- •Вопрос 9. Алкины
- •Термоокислительный крекинг
- •2. Гидрогалогенирование (присоединение галогеноводорода).
- •3. Гидратация (присоединение воды) алкинов.
- •1. Димеризация
- •2. Тримеризация
- •Гидроборирование[
- •Натуральные и синтетические каучуки
- •Стереохимия реакции дильса-альдера
- •Область применения реакции
- •11. Циклоалканы и их производные.
- •Напряжение Ван-дер-Ваальса.
- •Напряжение трансаннулярное (напряжение Прелога).
- •Напряжение угловое (ангулярное) или байеровское напряжение.
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Получение
- •Получение циклопентанов
- •Получение циклогексанов
- •Классификация[
- •Значение и применение
- •12. Арены.
- •Аннулены
- •Строение
- •Получение
- •Химические свойства
- •Критерии ароматичности.
- •Окисление аренов
11. Циклоалканы и их производные.
Классификация, номенклатура, изомерия
Алициклы классифицируют по степени насыщенности, размерам цикла, числу циклов, способу их соединения.
Циклоалканы содержат только простые связи, циклоалкены – одну двойную связь, циклоалкадиены – две двойные связи, циклоалкатриены – три и т.д. Циклы с числом атомов более 7 могут содержать тройную связь (циклоалкины).
По размеру цикла различают малые циклы (С3-С4), обычные циклы (С5-С7), средние циклы (С8-С11), макроциклы (С13 и более).
По числу циклов в молекуле различают моно- и полициклические соединения.
Моноциклоалканы имеют общую формулу СnH2n. Их систематические названия образуют, добавляя приставку цикло- к названию алкана с таким же числом атомов углерода. Замещенные циклоалканы и их функциональные производные называют и нумеруют в соответствии с общими правилами.
Для моноциклоалканов характерны изомерия углеродного скелета, связанная с разной величиной цикла, изомерия боковых цепей, изомерия положения заместителей в цикле. Моноциклоалканы изомерны алкенам.
При наличии в цикле двух и более заместителей возможна стереоизомерия. Цикл, подобно двойной связи, препятствует свободному вращению, что приводит к существованию цис- и транс- изомеров (для циклов, содержащих не более 7 атомов углерода). Замещенные атомы в цикле могут быть хиральными, что приводит к оптической изомерии. Однако хиральность циклических структур легче устанавливать, оценивая элементы симметрии молекула как целого. Например, цис-циклопропан-1,2-дикарбоновая кислота имеет плоскость симметрии и ахиральна. транс-Изомер не имеет плоскости симметрии и существует в виде пары оптических антиподов.
Полициклоалканы имеют общую формулу от СnH2n-2m, где m –число циклов в молекуле. По способу соединения циклов различают изолированные, спирановые, конденсированные и мостиковые структуры.
Изолированные циклы не имеют общих атомов углерода. Для составления их названий обычно используют рациональную номенклатуру.
В спирановых соединениях
циклы имеют один общий атом углерода.
За основу названия спироалканов берут
название алкана с тем же числом атомов
углерода и добавляют приставку спиро-.
Цифрами в квадратных скобках указывают
число атомов углерода в каждом цикле,
не считая общего (узлового) атома
углерода. Нумерацию начинают с цикла
меньшего размера, узловой атом углерода
нумеруют последним.
Конденсированные циклы содержат два общих атома углерода.
Мостиковые структуры содержат циклы с тремя и более общими атомами углерода.
В конденсированных и мостиковых структурах основу названия составляет соответствующий ациклический углеводород с таким же числом атомов углерода. В приставке указывают число циклов (бицикло-, трицикло- т.д.). Для определения числа циклов в полициклоалкане подсчитывают количество связей, которые необходимо разорвать для превращения его в соединение с открытой цепью. Числами в квадратных скобках указывают количество атомов в мостиках, связывающих узловые атомы. Атомы нумеруют, начиная с узлового. Сначала нумеруют цикл большего размера по наиболее длинному пути между двумя узловыми атомами, а затем мостиковые атомы углерода.
Особое место среди полициклоалканов занимают каркасные соединения, в том числе полиэдраны (общая формула СnHn), которые имеют жесткую структуру правильного многогранника.
Их номенклатура сложна, поэтому часто используют тривиальные названия. Каркасные соединения представляют собой жесткие напряженные структуры со значительным искажением валентных углов и длин связей. Исключение составляет адамантан, пространственное расположение атомов в котором соответствует кристаллической решетке алмаза.
Энергия напряжения циклоалканов и ее количественная оценка на основании сравнения теплот образования и теплот сгорания циклоалканов и соответствующих алканов.
О величине напряжения в циклоалканах можно судить по теплотам сгорания в расчете на одну СНг-группу, приведенным в табл. 4.4 [233]. Из этих данных видно, что циклоалканы размером больше 13-членных так же свободны от напряжения, как циклогексан.
Выше уже говорилось о том, как влияет напряжение в циклоалканах с небольшими кольцами на теплоты сгорания. Вполне вероятно, что другие химические свойства также будут изменяться под влиянием углового напряжения. И действительно, циклопропан и циклобутан значительно более реакционноспособны, чем углеводороды с открытой цепью. Так, они вступают в некоторые реакции, характерные для соединений с углерод-углерод-ной двойной связью, причем их реакционная способность зависит от степени углового напряжения и чувствительности атакующего агента к прочности связи С — С. Результатом таких реакций всегда оказывается раскрытие цикла путем разрыва связи С — Си образования соединения с открытой цепью, в котором углы между связями имеют нормальное значение.[c.111] Можно ожидать, что количество тепла, выделяемого при сгорании 1 моля циклоалкана, будет возрастать с увеличением молекулярной массы соединения, а количество тепла, приходящееся па одну метиленовую группу, будет оставаться постоянным. Однако данные, приведенные в табл. 7-2, показывают, что количество энергии, приходящееся на одну метиленовую группу, в циклопропане больше, чем в любом другом циклоалкане. Теплота сгорания в расчете на метиленовую группу достигает минимального значения в циклогексане, а затем начинает возрастать, достигая максимального значения в циклононане.
Типы напряжения в циклоалканах и подразделение циклов на малые, средние циклы и макроциклы.
малые циклы С3Н6и С4Н8, нормальные циклы С5Н10, С6Н12и С7Н14, "средние циклы" С8Н16 - С11Н22и макроциклы с большим числом атомов углерода.
КАКИЕ ТИПЫ НАПРЯЖЕНИЙ СУЩЕСТВУЮТ В ЦИКЛОАЛКАНАХ Напряжение заслонения или торсионное напряжение.
Этот тип напряжения, связанный с конформационным состоянием молекул, обусловлен отклонением атомов или групп атомов от наиболее выгодной заторможенной конформации.
