- •1. Теоретические основы органической химии.
- •2. Изомерия органических соединений:
- •1. Структурная изомерия
- •2. Пространственная изомерия (стереоизомерия)
- •3. Классификация химических реагентов и реакций.
- •4. Кислоты и основания:
- •5. Алифатические, алициклические и ароматические углеводороды: Гомологический ряд
- •Изомерия
- •Номенклатура
- •6. Химические свойства алканов: реакции галогенирования (хлорирование, бромирование, иодирование, фторирование).
- •Энергетика цепных свободнорадикальных реакций галогенирования.
- •Нитрование (м.И. Коновалов),
- •Сульфохлорирование
- •Окисление.
- •Селективность радикальных реакций и относительная стабильность алкильных радикалов.
- •Термический и каталитический крекинг.
- •Ионные реакции алканов (дейтероводородный обмен и галогенирование и нитрование в суперкислой среде).
- •7. Алкены. Гомологический ряд Структурная изомерия алкенов
- •Пространственная изомерия алкенов
- •Номенклатура
- •Геометрическая изомерия (цис, транс и z, e номенклатура).
- •Природа двойной связи.
- •Молекулярные орбитали этилена.
- •Виттига
- •Стереоселективное восстановление алкинов.
- •8. Химические свойства алкенов. Ряд стабильности алкенов, выведенный на основе теплот гидрирования. Теплота гидрирования и устойчивость алкенов
- •Гетерогенное и гомогенное гидрирование алкенов.
- •Стерео и региоселективность. Правило в.В. Марковникова, индуктивный и мезомерный эффекты.
- •Галогенирование: механизм, стереохимия.
- •Процессы, сопутствующие АdE реакциям: сопряженное присоединение, перегруппировки промежуточных карбокатионов.
- •Гидрогалогенирование: понятие о би- и тримолекулярных механизмах.
- •Гидратация. Промышленный метод синтеза этанола и пропанола-2.
- •Гидрокси и алкоксимеркурирование.
- •Метатезис алкенов.
- •Регио и стереоселективное присоединение гидридов бора.
- •Региоспецифические гидроборирующие реагенты. Превращение борорганических соединений в алканы, спирты, алкилгалогениды.
- •Вопрос 9. Алкины
- •Термоокислительный крекинг
- •2. Гидрогалогенирование (присоединение галогеноводорода).
- •3. Гидратация (присоединение воды) алкинов.
- •1. Димеризация
- •2. Тримеризация
- •Гидроборирование[
- •Натуральные и синтетические каучуки
- •Стереохимия реакции дильса-альдера
- •Область применения реакции
- •11. Циклоалканы и их производные.
- •Напряжение Ван-дер-Ваальса.
- •Напряжение трансаннулярное (напряжение Прелога).
- •Напряжение угловое (ангулярное) или байеровское напряжение.
- •Строение циклопропана
- •Строение циклобутана и циклопентана
- •Конформации циклогексана
- •Получение
- •Получение циклопентанов
- •Получение циклогексанов
- •Классификация[
- •Значение и применение
- •12. Арены.
- •Аннулены
- •Строение
- •Получение
- •Химические свойства
- •Критерии ароматичности.
- •Окисление аренов
Виттига
Другие лабораторные методы синтеза алкенов представляют собой реакции, сопровождающиеся изменением углеродного скелета молекулы.Важное место среди них занимает реакция Виттига, состоящая в конденсации карбонильных соединений с илидами фосфора.
Стереоселективное восстановление алкинов.
При восстановлении тройной углерод-углеродной связи до двойной возможно образование (если только тройная связь не находится на конце цепи) двух изомерных алкенов: цис и транс. Какой из изомеров будет преобладать, зависит от выбора восстанавливающего реагента.
транс-Алкен
образуется предпочтительно при
восстановлении алкинов натрием или литием в
жидком аммиаке, цис-Алкен образуется
почти исключительно (до 98%) при гидрировании
алкинов над некоторыми катализаторами:
над специально приготовленным палладием,
так называемым катализатором Линдлара,
или над боридом никеля,
называемым катализатором
,
предложенным X. Брауном (стр. 490) и его
сыном Ч. Брауном. [Можно использовать
видоизмененный метод гидроборирования
(разд. 15.11), также открытый X. Брауном.]
Подобная реакция, приводящая преимущественно к одному из нескольких возможных стереоизомеров, называется стереоселективной.
8. Химические свойства алкенов. Ряд стабильности алкенов, выведенный на основе теплот гидрирования. Теплота гидрирования и устойчивость алкенов
Теплоты
гидрирования часто дают ценную информацию
об относительной устойчивости ненасыщенных
соединений. Например, изомерные бутены-2:
цис-изомер имеет теплоту гидрирования
28,6 ккал
транс-изомер
— 27,6 ккал
Рис. 6.3. Теплоты гидрирования и устойчивость цис- и транс-бутенов-2.
В
обеих реакциях поглощается 1 моль водорода
и образуется один и тот же продукт —
н-бутан. При гидрировании транс-изомера
выделяется на 1 ккал
энергии
меньше,
чем при гидрировании цис-изомер а; это
означает, что содержание энергии в нем
на 1 ккал
меньше;
другими словами, транс-изомер на 1
ккал
устойчивее
цис-изомера (рис. 6.3). Аналогично
транс-пентен-2 [теплота гидрирования
27,6 ккал
на
I ккал
устойчивее
цис-пентена-2 [теплота гидрирования 28,6
ккал
].
Для простых дизамещенных этиленов обычно более устойчив трансизомер. Два объемистых заместителя расположены по разные стороны двойной связи, т. е. расстояние между ними больше, чем в цис-изомере; поэтому как пространственные препятствия, так и вандерваальсовы силы отталкивания меньше (разд. 4.5).
Теплоты
гидрирования показывают, что устойчивость
алкенов зависит также и от положения
двойной связи. Ниже приведены теплоты
гидрирования [ккал
]
некоторых соединений:
Каждая группа изомерных алкенов дает один и тот же алкан. Следовательно, различие в теплотах гидрирования обусловлено их неодинаковой устойчивостью. В каждом случае, чем больше степень замещения при двойной связи, тем устойчивее алкен. Устойчивость алкенов:
Гетерогенное и гомогенное гидрирование алкенов.
Следует различать гетерогенное и гомогенное каталитическое гидрирование алкенов. В гетерогенном гидрировании используются тонкоизмельченные металлические катализаторы - платина, палладий, рутений, родий, осмий и никель либо в чистом виде, либо нанесенные на инертные носители - BaSO4, CaCO3, активированный уголь, Al2O3 и т. д. Все они нерастворимы в органических средах и действуют как гетерогенные катализаторы
Так как оба атома водорода присоединяются к атомам углерода двойной связи с поверхности металла-катализатора, обычно присоединение происходит с одной стороны двойной связи. Этот тип присоединения называется син-присоединением. В тех случаях когда два фрагмента реагента присоединяются с различных сторон кратной связи (двойной или тройной) имеет место анти-присоединение. Термины син- и анти- по смыслу эквивалентны терминам цис- и транс-. Для того, чтобы избежать путаницы и недоразумений термины син- и анти- относятся к типу присоединения, а термины цис- и транс- к строению
Большим и принципиально важным достижением в каталитическом гидрировании является открытие растворимых комплексов металлов, которые катализируют гидрирование в гомогенном растворе. Гетерогенное гидрирование на поверхности металлических катализаторов имеет ряд существенных недостатков, таких, как изомеризация алкенов и расщепление одинарных углерод-углеродных связей (гидрогенолиз). Гомогенное гидрирование лишено этих недостатков. За последние годы получена большая группа катализаторов гомогенного гидрирования - комплексов переходных металлов, содержащих различные лиганды. Лучшими катализаторами гомогенного гидрирования являются комплексы хлоридов родия (I) и рутения (III) с трифенилфосфином - трис(трифенилфосфин)родийхлорид (Ph3P)3RhCl (катализатор Уилкинсона) и гидрохлорид трис(трифенилфосфин)рутения (Ph3P)3RuHCl. Наиболее доступен родиевый комплекс, который получается при взаимодействии хлорида родия (III) с трифенилфосфином. Родиевый комплекс Уилкинсона используется для гидрирования двойной связи в обычных условиях.
Важное преимущество гомогенных катализаторов заключается в возможности селективного восстановления моно- или дизамещенной двойной связи в присутствии три- и тетразамещенной двойной связи из-за больших различий в скорости их гидрирования.
В случае гомогенных катализаторов присоединение водорода также происходит как син-присоединение. Так восстановление цис-бутена-2 дейтерием в этих условиях приводит к мезо-2,3-дидейтеробутану.
Электрофильное присоединение (АdE).
Общее представление о механизме реакций, π и σ комплексы, ониевые ионы.
Механизм реакций электрофильного присоединения по связи углерод-углерод[править | править вики-текст]
Электрофильное присоединение по кратной связи обычно, двухстадийный процесс AdE2 — реакция бимолекулярного электрофильного присоединения (англ. addition electrophilic bimolecular). На первом этапе происходит атака электрофила и образование π-комплекса, который затем расщепляется, а далее образовавшийся карбкатион подвергается нуклеофильной атаке[1]:
Обычно, скорость лимитирующей является первая стадия реакции, хотя встречаются редкие исключения
Присоединение галогенов по механизму AdE2 является едва ли не самой распространенной реакцией подобного рода. На первом этапе образуется π-комплекс, который в дальнейшем преобразуется в σ-комплекс и далее в дигалогенпроизводное[3]:
Присоединение брома — анти-присоединение, то есть присоединение с противоположной стороны, относительно плоскости молекулы алкена[3]. Это весьма наглядно представляется с помощью формул Ньюмена.
