Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Делимость ц.н.ч..2017 ЧАСТЬ 1 (1).doc
Скачиваний:
2
Добавлен:
01.07.2025
Размер:
270.34 Кб
Скачать

Понятие отношения делимости

Определение. Число а делится на число в тогда и только тогда, когда существует такое число q, что а = в q. а в ( q N0) [а = вq].

Обозначают: а в. Читают: «число а кратно числу в», «число в – делитель числа а», «а кратно в».

Равенство а=вq называют формулой кратности числа а числу в.

Число а, кратное 2, называют четным. Общий вид четного числа: а = 2n, n N0.

Число, кратное 3 имеет формулу: а = 3n, n N0.

Определение. Отношение делимости на множестве N0 N содержит те и только те пары чисел (а, в), у которых первая координата кратна второй. Обозначают: « ».

« » = {(а, в)| (а, в) N0 N а в}.

Если отношение делимости обозначить , то N0 N ={(а, в)| (а, в) N0 N а=вq}.

Теорема. Делитель в данного числа а не превышает этого числа, то есть, если а в в а.

Доказательство. Так как а в, то ( q N0) [а = вq] а – в=вq-в=в(q – 1), так как q N q 1.

Тогда в (q – 1) 0 в а. Из определения отношения делимости и равенства а = 1 а, следует, что 1 является делителем для любого натурального числа.

Следствие. Множество делителей данного числа конечно.

Например, делители числа 18 является конечное множество: {1, 2, 3, 6, 9, 18}.

Свойства отношения делимости

1. Отношение делимости рефлексивно, то есть любое натуральное число делится само на себя: ( а N) [(а,а) ], то есть а : а = 1.

Доказательство. ( а N)[а = а 1] по определению отношения делимости а : а.

2. Отношение делимости антисимметрично, то есть для различных чисел а и в из того, что а в, следует, что в не кратно а. ( а, в N0 N)[а в а в ].

Доказательство. Допустим, что в а, тогда в а. Но по условию а в, так как а в.

Неравенства в а а в истины только в том случае, если а = в. пришли к противоречию с условием. Следовательно, допущение, что в а Л. Таким образом, отношение делимости антисимметрично.

3. Отношение делимости транзитивно. ( а,в,с N0 N)[а в в с а с].

Доказательство. Если а в ( q N)[а = вq] (1) Из того, что в с ( t N)[в = сt] (2)

Подставим в = сt в равенство (1), получим: а = (сt)q = c(tq), t,q N tq N tq = р а = ср, р N. А это значит, что а с.

Признаки делимости. Делимость суммы, разности, произведения

Определение. Признаком делимости называется предложение, в котором доказывается как можно предсказать делимость одного числа на другое, не выполняя деления этих чисел.

Теорема (признак делимости суммы). Если числа а и в делится на число n, то их сумма делится на это число, ( а,в,n N0 N)[а n в n (а + в) n].

Доказательство. Из того что а n в n (по определению отношения делимости)

а=nq1 (1), q1 N. в=nq2 (2), q2 N. Преобразуем сумму (а + в) к виду:

а + в = nq1 + nq2 = n (q1 + q2) = nq,q = q1 + q2. а + в = nq.

Следовательно, по определению отношения делимости, что (а + в) n.

Теорема (признак делимости разности). Если числа а и в делятся на число n и а в, то их разность а – в делится на число n, то есть

( а,в,n N0 N)[а n в n а в (а – в) n].

Теорема (признак делимости произведения). Если один из множителей произведения делится на число n, то и все произведение делится на число n.

( а,в,n N0 N)[а n (ав) n].

Доказательство. Из того, что а n а = nq (1). Умножим обе части равенства (1) на в N, получим: ав = nqв (по ассоциативности умножения) ав = n(qв) = nt, где t = qв ав = nt. А это значит, что ав n (по определению отношения делимости). Таким образом, для делимости произведения на число достаточно чтобы на данное число делился хотя бы один из множителей этого произведения.

Теорема. Если в произведении ав множитель а делится на натуральное число m, а множитель в делится на натуральное число n, то ав делится на mn.

( а,в,m,n N)[а m в n ав mn].

Доказательство. Из того, что а m а = mq1, q1 N; в n в = nq2, q2 N

ав = mq1 nq2, = mn(q1 q2) = mnq, q1 q2 = q N. ав = mnq ав mn.

Теорема (признак делимости на 2). Для того, чтобы число х делилось на 2 необходимо и достаточно, чтобы его десятичная запись оканчивалась одной из цифр: 0, 2, 4, 6, 8.

Доказательство. Пусть число х записано в десятичной системе счисления, то есть:

х = аn10n + an–110n–1 + …+a110 + a0, где аn, an–1, …, а1 – цифры, принимающие значения 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 и аn 0, а0 – принимает значения 0, 2, 4, 6, 8.

Д окажем, что число х 2. Так как 10 2, то любая степень числа 10 2. Десятичную запись числа х представим в виде: х = (аn10n + an–110n–1 + …+a110) + a0