Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.88 Mб
Скачать

Зависимость коэффициентов переноса от давления р

       Так как скорость теплового движения молекул   и не зависит от давления Р, а коэффициент диффузии D ~ λ, то и зависимость D от Р должна быть подобна зависимости λ(Р). При обычных давлениях и в разряженных газах  ; в высоком вакууме D = const.

       С ростом давления λ уменьшается и затрудняется диффузия ( ).

       В вакууме и при обычных давлениях  , отсюда   и  .

       С увеличением Р и ρ, повышается число молекул, переносящих импульс из слоя в слой, но зато уменьшается расстояние свободного пробега λ. Поэтому вязкость η и теплопроводность χ, при высоких давлениях, не зависят от Р (η и χ – const). Все эти результаты подтверждены экспериментально.

  Рис. 3.7

На рисунке 3.7 показаны зависимости коэффициентов переноса и длины свободного пробега λ от давления Р. Эти зависимости широко используют в технике (например, при измерении вакуума).

Молекулярное течение. Эффузия газов

       Молекулярное течение – течение газов в условиях вакуума, то есть когда молекулы не сталкиваются друг с другом.

       В вакууме происходит передача импульса непосредственно стенкам сосуда, то есть происходит трение газа о стенки сосуда. Трение перестаёт быть внутренним, и понятие вязкости теряет свой прежний смысл (как трение одного слоя газа о другой).

       Течение газа в условиях вакуума через отверстие (под действием разности давлений) называется эффузией газа.

       Как при молекулярном течении, так и при эффузии, количество протекающего в единицу времени газа обратно пропорционально корню квадратному из молярной массы:

 

 

(3.6.1)

Эту зависимость тоже широко используют в технике, например для разделения изотопов газа U235 (отделяют от U238, используя газ UF6).

Вопрос №61

1. Первый закон термодинамики, установленный на основании многочисленных опытов, утверждает, что изменение внутренней энергии ΔU системы равно сумме совершаемой над системой работы A' внешних сил и количества теплоты Q, переданного системе извне.

.

(4.18)

Этот закон можно сформулировать несколько иначе, если вместо работы A' внешних сил говорить о работе A самой системы. Поскольку A' = – A, то

, или  ,

(4.19)

таким образом, полученное системой количество теплоты равно сумме изменения ее внутренней энергии и работы, совершаемой системой над внешними телами.

Соотношения (4.18) и (4.19) представляют собой математическое выражение первого закона термодинамики, который является конкретной формулировкой закона сохранения энергии применительно к тепловым процессам.

По сути дела, формулировка 1-го начала термодинамики послужила основанием для утверждения в физике понятия "энергия". С той поры оно заняло центральное место в физике, отодвинув на второй план введенное Ньютоном понятие "сила". Признание энергии как наиболее общего понятия, позволяющего рассматривать с единой точки зрения все явления и процессы, следует признать основным достижением науки XIX в.

Весь производственный и научный опыт, многочисленные экспериментальные подтверждения предсказаний, сделанные на основе первого начала, свидетельствуют о справедливости этого базового закона природы.

2. Рассмотрим систему, которая получает энергию в процессе теплообмена. Пусть для изменения температуры системы на ΔT потребовалось количество теплоты Q. Теплоемкостью системы называется величина

.

(4.20)

Если в качестве системы рассматривать 1 моль вещества, то теплоемкость, определяемая соотношением (4.20), называется молярной теплоемкостью. Удельная теплоемкость (теплоемкость единицы массы вещества) связана с молярной теплоемкостью очевидным равенством:

.

(4.21)

В уравнении (4.19) величина A, как было показано выше, является функцией процесса, тогда и величина Q, очевидно, зависит от условий процесса и является его функцией. Поскольку Q есть функция процесса, то и теплоемкость, естественно, есть функция процесса и для ее определения необходимо указать условия процесса. Обычно различают теплоемкость при постоянном объеме СV (изохорный процесс) и теплоемкость при постоянном давлении СР (изобарный процесс). Воспользуемся уравнением (4.19) для определения величин СР и СV и установления соотношения между ними.

При изохорном процессе   и, как следует из (4.16), работа равна нулю. При этом условии, используя (4.19) и (4.20), находим

.

(4.22)

Для изобарного процесса, используя равенства (4.16), (4.19) и (4.22), получаем

.

(4.23)

Уравнение (4.23) показывает, что теплоемкость СР больше СV на величину работы, совершаемой системой при ее изобарном нагревании на 1ºС.

Для моля идеального газа уравнение состояния имеет вид:

PV = RT.

Применение этого уравнения к двум состояниям моля газа в изобарном процессе приводит к соотношению

РΔV = RΔT.

(4.24)

Подставляя (4.24) в (4.23), получаем

CP = CV + R.

(4.25)

Полученное уравнение называется уравнением Роберта Майера. Из сравнения уравнений (4.23) и (4.25) легко вскрыть физический смысл универсальной газовой постоянной. Эта величина, очевидно, равна работе изобарического расширения моля идеального газа при его нагревании на один Кельвин.

Вопрос №62