Задания
.pdfn
n
n m
1; 2; . . . ; n
3n
n
n n
1 2
n + . . . + n =n n
k 1 k
X; Y
  | 
	
  | 
	0 < u < 1 0 < v < 1  | 
P {X < u, Y < v} = P {X < u}P {Y < v} = uv;  | 
||
0 < t < 1  | 
	
  | 
	
  | 
1) P {|X − Y | < t};  | 
	2) P {XY < t};  | 
|
3) P {max(X, Y ) < t};  | 
	4) P {min(X, Y ) < t};  | 
|
P {X + Y < t}  | 
	0 < t < 2  | 
|
  | 
	
  | 
	l  | 
X, Y Z
2n 2n
n
l
2l/3
1/2
1/2
A
A
C
R n
n
p  | 
	m + l  | 
	l  | 
1; . . . ; An A  | 
	i = P ( A i )  | 
	i = 1; . . . ; n  | 
  | 
	
  | 
	
  | 
  | 
	
  | 
|
i  | 
	A  | 
	
  | 
i A
i A
A B
B
A
k
l
A
C
n
m/n
k 1 − q
n
BBBB CCCC
ABCA
λk e−λ k
k!
λ
m
P{a < X < b} P{a ≤ X < b} P{a < X ≤ b} P{a ≤ X ≤ b}
(  | 
	1 y  | 
	|  | 
	−  | 
	y  | 
	
  | 
	≡  | 
	
  | 
2) −|  | 
	
  | 
	f(y) = cos y f(y)  | 
	1  | 
||||
f y e=  | 
	
  | 
	f(y) = e  | 
	
  | 
||||
{
f(y) =
Cy2, y [0, 1],
0, y ̸ [0, 1].
C
  | 
	λ = n  | 
|
α,λ  | 
	
  | 
|
  | 
	
  | 
|
l
R
X \ Y
X Y
2 Z = Y
n
1
n Y k k Y k =
X
X
f(t) =  | 
	{ θtθ−1, t [0, 1],  | 
|
  | 
	0,  | 
	t ̸ [0, 1].  | 
X Y
X
X
= X2 = sinY X
1 2
max(0, X)
kP}{=XP={Yy = yk} = pk k ≥ 1  | 
	X Y  | 
P{X = Y }  | 
|
X Y  | 
	P{X = 0} = P{X = 1} = 1/2  | 
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	1  | 
	X  | 
	2  | 
	= XY−  | 
	
  | 
	
  | 
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	= 2X + 1  | 
	1  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	X  | 
	
  | 
	2 = XY− [X]  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	1 = [X]  | 
	
  | 
	
  | 
	Y  | 
|||||
  | 
	3  | 
	=  | 
	
  | 
	2  | 
	4  | 
	
  | 
	1  | 
	ln  | 
	
  | 
	√  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||||||
Y  | 
	X  | 
	
  | 
	= α−  | 
	X  | 
	5 =  | 
	YX  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||
  | 
	
  | 
	
  | 
	
  | 
	Y  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|||||
X
Y
X Y
P{X = 2Y }
X Y
m
∑  | 
	∑  | 
∞  | 
	∞  | 
P (X ≥ k) EX =  | 
	P ( X = k ) = 1  | 
k=1  | 
	k =1  | 
X Y X
Y
2X + 3Y
[a; b]
Y
1 n
2013 EX X
k
X
Ck−10, k = 1, 2, . . . C
X
ρ (X, X + Y )
X
β
Y = eβX
  | 
	∫  | 
	
  | 
	
  | 
	
  | 
	X2  | 
	
  | 
	∫  | 
	∞  | 
	
  | 
	
  | 
	4dt  | 
	
  | 
	
  | 
	X  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	−2  | 
	t  | 
	≥  | 
	1  | 
||
E  | 
	X 1  | 
	=  | 
	∞  | 
	3  | 
	dt = 3/2  | 
	
  | 
	=  | 
	
  | 
	3  | 
	t  | 
	= 1  | 
	
  | 
	X1  | 
	= 1  | 
	− (3  | 
	/  | 
	2)  | 
	2  | 
	<  | 
	0  | 
	
  | 
	
  | 
||||
−  | 
	1  | 
	3t−  | 
	
  | 
	E−  | 
	
  | 
	1  | 
	−  | 
	
  | 
	
  | 
	D−  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||||||||||
ρ (X, Y )
2) X ρ (X, X
  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
|
T  | 
	Z  | 
	
  | 
	
  | 
	
  | 
||
(  | 
	
  | 
	)  | 
	
  | 
|||
  | 
	, Z2)  | 
	
  | 
	
  | 
|||
Z = (Z1  | 
	
  | 
	
  | 
||||
  | 
	
  | 
	T  | 
	
  | 
	
  | 
||
X = (X1, X2)  | 
	
  | 
	
  | 
||||
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	8  | 
	18  | 
	
  | 
	
  | 
  | 
	
  | 
	
  | 
	45  | 
|||
  | 
	
  | 
	Z  | 
	18  | 
	
  | 
||
2 + X2 C X
1 2
CY,X ) (X
1 2
Y
1, X2, ... X
λ
X12 + ... + Xn2  | 
	(  | 
	X1 + ... + Xn  | 
	)2  | 
|
−  | 
	?  | 
|||
n  | 
	n  | 
X
DX
n
−1
exp(2it − 2t2)
n n → ∞
1, X2, . . . X
n → ∞
X12 + . . . + Xn2
n ;
√
X12 + . . . + Xn2
n ;
1 (  | 
	1  | 
	
  | 
	
  | 
	
  | 
	1  | 
	)  | 
||
  | 
	
  | 
	
  | 
	+ . . . +  | 
	
  | 
	
  | 
	
  | 
	;  | 
|
X  | 
	
  | 
	
  | 
	X  | 
	
  | 
||||
n  | 
	1 +(  | 
	1  | 
	
  | 
	
  | 
	1 +  | 
	
  | 
	n )  | 
|
  | 
	2  | 
	
  | 
	+ . . . + Xn) .  | 
|||||
arctg (X1  | 
||||||||
  | 
	n  | 
	
  | 
	
  | 
	
  | 
	
  | 
	
  | 
||
−8
1, . . . , xn) x = (x
P{X = 0} = (1 − p)2, P{X = 1} = 2p(1 − p), P{X = 2} = p2.
f(x) =  | 
	{ 2x e−x2/θ  | 
	x > 0;  | 
θ  | 
	x ≤ 0.  | 
|
  | 
	0  | 
f(x) =  | 
	{ 3x2 e−x3/θ  | 
	x > 0;  | 
θ  | 
	x ≤ 0.  | 
|
  | 
	0  | 
  | 
	{ 1  | 
	
  | 
	√  | 
	
  | 
	
  | 
	
  | 
|
  | 
	
  | 
	
  | 
	
  | 
||||
  | 
	
  | 
	2θ√  | 
	
  | 
	e− x/θ  | 
	x > 0;  | 
||
f(x) =  | 
	
  | 
	x  | 
|||||
  | 
	
  | 
	
  | 
	0  | 
	x ≤ 0.  | 
|||
  | 
	
  | 
	
  | 
	
  | 
||||
P{X = 1} = p2, P{X = 2} = 2p(1 − p), P{X = 3} = (1 − p)2.
  | 
	{ 3√  | 
	
  | 
	
  | 
	√  | 
	
  | 
	
  | 
	
  | 
|
  | 
	x  | 
	x > 0;  | 
||||||
  | 
	
  | 
	
  | 
||||||
f(x) =  | 
	2θ  | 
	e−x x/θ  | 
||||||
0  | 
	x ≤ 0.  | 
|||||||
  | 
	
  | 
	
  | 
	
  | 
|||||
f(x) =  | 
	{ 1 x−(θ+1)/θ  | 
	x > 1;  | 
θ  | 
	x ≤ 1.  | 
|
  | 
	0  | 
  | 
	{  | 
	
  | 
	1)x−θ  | 
	
  | 
f(x) =  | 
	(θ  | 
	−  | 
	x > 1;  | 
|
  | 
	0  | 
	x ≤ 1.  | 
||
  | 
	
  | 
	
  | 
  | 
	{  | 
	x  | 
	e−x/θ  | 
	x > 0;  | 
f(x) =  | 
	2  | 
|||
  | 
	θ  | 
	x ≤ 0.  | 
||
  | 
	0  | 
|||
  | 
	{  | 
	x2  | 
	e−x/θ  | 
	x > 0;  | 
f(x) =  | 
	3  | 
|||
2θ  | 
	x ≤ 0.  | 
|||
  | 
	0  | 
|||
P{X = 0} = (1 − p)3, P{X = 1} = 3p(1 − p)2, P{X = 2} = 3p2(1 − p), P{X = 3} = p3.
{ √  | 
	
  | 
	
  | 
||
  | 
	
  | 
	
  | 
	
  | 
|
  | 
	2  | 
	e−x2/θ  | 
	x > 0;  | 
|
f(x) = πθ  | 
||||
0  | 
	x ≤ 0.  | 
|||
  | 
	
  | 
|||
f(x) =  | 
	{ 4x3 e−x4/θ  | 
	x > 0;  | 
θ  | 
	x ≤ 0.  | 
|
  | 
	0  | 
f(x) =  | 
	{ 2 e−2x/θ  | 
	x > 0;  | 
θ  | 
	x ≤ 0.  | 
|
  | 
	0  | 
