- •Преимущества дискретной формы
- •Представление информации в цифровых автоматах. Информация и алфавит. Кодирование.
- •Код Шеннона-Фано
- •Код Хаффмана Кодирование Хаффмана[править | править вики-текст]
- •Кодирование в компьютере чисел со знаком Прямой код
- •Дополнительный код
- •Операция сложения положительного числа и отрицательного числа, представленного в прямом коде
- •Операция сложения положительного числа и отрицательного числа, представленного в дополнительном коде
- •Кодирование вещественных чисел. Нормализованное представление числа
- •Описание[править | править вики-текст]
- •Преимущества и недостатки[править | править вики-текст] Преимущества[править | править вики-текст]
- •Недостатки[править | править вики-текст]
- •1) Классификация моделей по области использования:
- •2) Классификация моделей по фактору времени:
- •Особенности алгоритмов управления ресурсами
- •Особенности аппаратных платформ
- •Особенности областей использования
- •Особенности методов построения
- •Монолитное ядро[править | править вики-текст]
- •Модульное ядро[править | править вики-текст]
- •Микроядро[править | править вики-текст]
- •Экзоядро[править | править вики-текст]
- •Наноядро[править | править вики-текст]
- •Гибридное ядро[править | править вики-текст]
- •Физическая организация памяти компьютера
- •Классификация процессоров:
- •Классификация по назначению
- •Классификация по характеру временной организации работы
- •Классификация по количеству выполняемых программ
- •Конвейеризация - способ обеспечения параллельности выполнения команд
- •O Аппаратное обеспечение компьютера – это группа взаимосвязанных устройств, предназначенных для приема, преобразования и выдачи информации.
- •Ускорение вычислений.
- •Вычислительные системы с программируемой структурой
- •Требования, предъявляемые к инфологической модели
- •Архитектура odmg
- •1.2. Домен
- •1.3. Схема отношения, схема базы данных
- •1.4. Кортеж, отношение
- •7.2.1. Общие определения
- •7.2.2. Замыкание множества функциональных зависимостей. Аксиомы Армстронга. Замыкание множества атрибутов
- •Пересечение
- •Разность
- •Структура памяти эвм
- •По порядку сортировки
- •По источнику данных
- •По воздействию на источник данных
- •По структуре
- •По количественному составу
- •По характеристике содержимого
- •По механизму обновления
- •По покрытию индексируемого содержимого
- •3.3. Виды привилегий
- •Стандарт iso 7498
- •Асинхронная передача.
- •Синхронная передача.
- •Кабельные линии связи
- •Беспроводные (радиоканалы наземной и спутниковой связи) каналы передачи данных
- •Технология скремблирования
- •Селективные методы
- •Методы случайного доступа
- •Методы резервирования времени
- •Технология доступа[править | править вики-текст]
- •Обнаружение коллизий[править | править вики-текст]
- •Формат кадра
- •Разновидности Ethernet
- •Структура Fast Ethernet
- •Подуровень управления логической связью (llc)
- •Новые интерфейсы и модель физического уровня
- •Типы спецификаций 10-гигабитного Ethernet
- •Объединение сетей в интерсеть. Удаленный мост
- •Формат сообщения протокола rip 1
- •Формат сообщения протокола rip 2
- •1.1. Назначение протокола arp. Arp-таблицы. Статические и динамические записи arp-таблиц, arp-кэш
- •3.2. Формат icmp-пакета
Архитектура odmg
Предлагаемая ODMG архитектура показана на рис. 2.1. В этой архитектуре определяются способ хранения данных и разные виды пользовательского доступа к этому “хранилищу данных”17. Единое хранилище данных доступно из языка определения данных, языка запросов и ряда языков манипулирования данными.18 На рис. 2.1 ODL означает Object Definition Language (язык определения объектов), OQL – Object Query Language (язык объектных запросов) и OML – Object Manipulation Language (язык манипулирования объектами).
Рис. 2.1. Архитектура ODMG
Центральной в архитектуре является модель данных, представляющая организационную структуру, в которой сохраняются все данные, управляемые ООСУБД. Язык определения объектов, язык запросов и языки манипулирования разработаны таким образом, что все их возможности опираются на модель данных. Архитектура допускает существование разнообразных реализационных структур для хранения моделируемых данных, но важным требованием является то, что все программные библиотеки и все поддерживающие инструментальные средства обеспечиваются в объектно-ориентированных рамках и должны сохраняться в согласовании с данными.
Основными компонентами архитектуры являются следующие.
Объектная модель данных. Все данные, сохраняемые ООСУБД, структуризуются в терминах конструкций модели данных. В модели данных определяется точная семантика всех понятий (более подробно см. ниже).
Язык определения данных (ODL ). Схемы баз данных описываются в терминах языка ODL , в котором конструкции модели данных конкретизируются в форме языка определения. ODL позволяет описывать схему в виде набора интерфейсов объектных типов, что включает описание свойств типов и взаимосвязей между ними, а также имен операций и их параметров. ODL не является полным языком программирования; реализация типов должна быть выполнена на одном из языков категории OML . Кроме того, ODL является виртуальным языком в том смысле, что в стандарте ODMG не требуется его реализация в программных продуктах ООСУБД, которые считаются соответствующими стандарту. Допускается поддержка этими продуктами эквивалентных языков определения, включающих все возможности ODL , но адаптированных под особенности конкретной системы. Тем не менее, наличие спецификации языка ODL в стандарте ODMG является важным, поскольку в языке конкретизируются свойства модели данных.
Язык объектных запросов (ODL ). Язык имеет синтаксис, похожий на синтаксис языка SQL, но опирается на семантику объектной модели ODMG . В стандарте допускается прямое использование OQL и его встраивание в один из языков категории OML .
Реляционная модель данных
Почти все современные системы основаны на реляционной (relational) модели управления базами данных. Название реляционнаясвязано с тем, что каждая запись в такой базе данных содержит информацию, относящуюся только к одному конкретному объекту.
В реляционной СУБД все обрабатываемые данные представляются в виде плоских таблиц. Информация об объектах определенного вида представляется в табличном виде: в столбцах таблицы сосредоточены различные атрибуты объектов, а строки предназначены для сведения описаний всех атрибутов к отдельным экземплярам объектов.
Модель, созданная на этапе инфологического моделирования, в наибольшей степени удовлетворяет принципам реляционности. Однако для приведения этой модели к реляционной необходимо выполнить процедуру, называемую нормализацией.
Теория нормализации оперирует с пятью нормальными формами. Эти формы предназначены для уменьшения избыточности информации, поэтому каждая последующая нормальная форма должна удовлетворять требованиям предыдущей и некоторым дополнительным условиям. При практическом проектировании баз данных четвертая и пятая формы, как правило, не используются. Мы ограничились рассмотрением первых четырех нормальных форм.
Введем понятия, необходимые для понимания процесса приведения модели к реляционной схеме.
Отношение - абстракция описываемого объекта как совокупность его свойств. Проводя инфологический этап проектирования, мы говорили об абстракции объектов и приписывали им некоторые свойства. Теперь же, проводя концептуальное проектирование, мы переходим к следующему уровню абстракции. На данном этапе объектов, как таковых, уже не существует. Мы оперируем совокупностью свойств, которые и определяют объект.
Экземпляр отношения - совокупность значений свойств конкретного объекта.
Первичный ключ - идентифицирующая совокупность атрибутов, т.е. значение этих атрибутов уникально в данном отношении. Не существует двух экземпляров отношения содержащих одинаковые значения в первичном ключе.
Простой атрибут - атрибут, значения которого неделимы.
Сложный атрибут - атрибут, значением которого является совокупность значений нескольких различных свойств объекта или несколько значений одного свойства.
Понятия сущности..
