- •Основы вариационного исчисления - I
- •III курса специальностей км и дпм
- •Введение
- •Из истории вариационного исчисления
- •Задача о брахистохроне или как льва узнают по когтям
- •Изопериметрическая задача или легенда о Дидоне
- •Задача о геодезических линиях
- •Задачи с закрепленными границами
- •Уравнение Эйлера
- •Частные случаи уравнения Эйлера
- •Обобщения уравнения Эйлера
- •Список рекомендуемой литературы
- •Варианты заданий Задание 1
- •Задание 2
- •Задание 3
- •Задание 4
- •Лицензия лр № 020370
Министерство образования и науки РФ
Федеральное агентство по образованию
Пермский государственный технический университет
Кафедра вычислительной математики и механики
Основы вариационного исчисления - I
Методические указания
и варианты заданий
для самостоятельной работы студентов
III курса специальностей км и дпм
Пермь 2006
УДК 517 (075.8)
Основы вариационного исчисления, ч.I: методические указания и варианты заданий для самостоятельной работы студентов III курса / Сост. доц. В.В. Малыгина; Пермь: Изд-во Перм. гос. техн. ун-та, 2006. 32 с.
Методическое пособие предназначено для студентов III курса специальностей КМ и ДПМ, изучающих дисциплину «Основы вариационного исчисления». Кратко изложены необходимые теоретические сведения из курса вариационного исчисления, которые сопровождаются разбором типовых примеров. Даны варианты заданий для самостоятельной работы.
Рецензент – канд. техн. наук, доцент кафедры ВММ И.Н. Бояршинова.
©Пермский государственный технический университет, 2006
Введение
Как известно из курса дифференциального исчисления, вопрос отыскания экстремумов гладкой функции сводится к исследованию нулей ее производной; более того, введению самого понятия производной как раз и способствовали попытки решения задач на отыскание наибольшего и наименьшего значения функции.
Аппарат дифференцирования оказался простым, универсальным и эффективным методом, с помощью которого удается решать практически любые задачи на экстремум, если интересующая нас величина может быть задана как функция, то есть представляет собой отображение числового множества в числовое множество. А если область определения или множество значений – не числа? Получается, что тогда у нас нет ни функции, ни ее производной, ни, стало быть, метода решения задач на экстремум? Но ведь для объектов, не являющихся функциями, задачи на экстремум ничуть не утрачивают своей актуальности, и необходимо как-то научиться их решать.
Метод решения задач на экстремум для отображений более общей природы, чем функции, и составляет суть классического вариационного исчисления, основы которого были заложены в XVIII в. в работах двух выдающихся математиков того времени – Леонарда Эйлера и Жозефа Луи Лагранжа.
Рассмотрим – вслед за Эйлером и Лагранжем – задачу о нахождении наибольшего и наименьшего значения функционалов – отображений, областью определения которых являются произвольные пространства, а множеством значений – числа (вещественные или комплексные). Легко привести примеры функционалов. Возьмем в качестве области определения плоскость или трехмерное пространство – получим функционал, который мы называли раньше функцией двух или трех переменных. Пусть область определения – множество непрерывных на отрезке функций. Поставим в соответствие каждой функции число – значение определенного интеграла от функции по данному отрезку – и мы снова получим функционал, на этот раз интегрального вида.
Для функционалов удалось построить столь же простой и красивый метод решения задач на отыскание экстремумов, как и для функций. Это оказалось возможным как раз потому, что для функционалов нашелся аналог дифференциала. Им оказалось введенное в работах Лагранжа понятие вариации функционала, которое явилось основой нового раздела математики (и дало ему название).
Оказалось, что замена дифференцирования варьированием сохраняет практически без изменений теоремы классического анализа, на которых базируется решение задач на экстремум: в точке экстремума первая вариация необходимо равна нулю, а характер критической точки (максимум, минимум, отсутствие экстремума) определяется свойствами второй вариации.
Основываясь на этих результатах, можно, выстраивая подходящие функционалы, получать решения многих задач, связанных с нахождением экстремумов.
