
- •1. Общая характеристика свойств металлических материалов. Методы исследования строения металлов и сплавов.
- •2. Атомно-кристалическая структура металла. Элементарные ячейки.
- •3. Несовершенства кристаллической решетки реальных металлов.
- •4. Процесс кристаллизации металлов.
- •5.Строение металлического слитка. Особенности строения литого и деформированного металла.
- •6.Полиморфные превращения в металлах.
- •7. Строение типовых двухкомпонентных сплавов.
- •8. Общие сведения о диаграммах состояния. Правило фаз.
- •9.Диаграммы состояния двухкомпонентных сплавов с полной растворимостью компонентов в твердом и жидком состоянии.
- •10. Диаграммы состояния двухкомпонентных сплавов с ограниченной растворимостью компонентов в твердом состоянии и наличии эвтектического превращения.
- •11. Диаграммы состояния двухкомпонентных сплавов с ограниченной растворимостью компонентов в твердом состоянии и наличии перитектического превращения.
- •12. Диаграммы состояния двухкомпонентных сплавов, образующих химическое соединение.
- •13. Связь диаграмм состояния с механическими и технологическими свойствами сплавов.
- •14. Диаграмма состояния железо-цементит (Fe-Fe3c). Основные фазы и структурные составляющие.
- •1. Перетектическая реакция
- •4. Цементит.
- •15. Стабильная диаграмма состояния железо-графит.
- •16. Фазовые превращения при вторичной кристаллизации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.
- •17. Фазовые превращения при вторичной кристаллизации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.
- •18. Серые чугуны. Структура, свойства, область применения.
- •19. Ковкие чугуны. Структура, свойства, область применения.
- •20. Высокопрочные чугуны. Структура, свойства, область применения.
- •22. Классификация, маркировка и применение углеродистых сталей.
- •Маркировка сталей
- •23. Структурные классы легированных сталей. Влияние легирующих элементов на полиморфизм железа.
- •24.Маркировка легированных сталей.
- •25. Перлитное превращение в стали.
- •30.Превращение при нагреве закаленной на мартенсит стали.
- •31.Нагрев при термообработке. Окисление и обезуглероживание поверхности стали.
- •32. Отжиг первого рода.
- •33. Отжиг второго рода и нормализация стали.
- •35.Отпуск стали (технология термообработки).
- •36. Прокаливаемость стали.
- •Схемы, показывающие различную скорость охлаждения по сечению и в связи с этим несквозную прокаливаемость.
- •37. Методы поверхностного упрочнения сталей. Закалка твч.
- •38. Процессы, происходящие при химико-термической обработке металла.
- •39.Цементация. Термообработка стали после цементации.
- •40.Азотирование стали.
- •41.Состав, назначение и термообработка улучшаемых сталей.
- •42.Корозионно стойкие и жаростойкие стали.
- •43.Инструментальные стали. Теплостойкость. Быстрорежущие стали.
- •45. Деформируемые алюминиевые сплавы, упрочняемые термообработкой.
- •46.Деформируемые алюминиевые сплавы, не упрочняемые термообработкой.
- •47.Литейные алюминиевые сплавы.
- •48.Титан и его сплавы.
- •49,50.Медь и сплавы на ее основе. Латуни. Бронзы.
- •51.Строение полимеров. Физическое состояние полимеров.
- •52. Состав, свойства и применение пластмасс.
- •53.Свойства и применение неорганических стекол и ситаллов.
- •XNa2o yCaO zSiO2 ....
- •54.Состав, свойства и применение технической керамики.
- •55.Композиционные материалы на металлической основе.
- •56. Композиционные материалы на неметаллической основе.
56. Композиционные материалы на неметаллической основе.
Свойства конструкционных ПКМ определяются свойствами основных компонентов - матрицы и арматуры. Наиболее прочные композиты на основе фенольных смол, эпоксидных и полиэфирных смол; максимально химически стойкие ПКМ на основе полиэтилена, полипропилена и фторопласта. Сочетание эпоксидных, полиэфирных и меламиноформальдегидных смол с синтетическими тканями, волокнами и бумагой дает легкие материалы, устойчивые к вибрационным и ударным нагрузкам, водостойкие и сохраняющие герметичность в условиях сложного нагружения. ПКМ на основе эпоксидных смол, армированных УВ, борными волокнами или НК, являются наиболее высокомодульными полимерными композиционными материалами, по удельной жесткости в несколько раз превосходящими металлы. Длительно работоспособны при температуре 576 К стекло- и асбопластики с кремнийорганическим связующим; в интервале температур 573 - 613 К - полиимиды в сочетании с кремнеземным, асбестовым и ли углеродным наполнителем; в интервале 633 - 773 К в воздушной и 2273 - 2773 К в вакууме стойкими являются УУКМ. Использование профилированных СВ с различной формой сечения повышает плотность упаковки волокон и увеличивает прочность и жесткость ПКМ, особенно в поперечном направлении. Свойства ПКМ зависят от вида применяемых волокон. К органическим волокнам относят волокна на основе араматических полиамидов (арамидов). Высокопрочные и высокомодульные арамидные волокна обладают уникальным комплексом свойств, высокими прочностью и модулем упругости, термостабильностью, позволяющей эксплуатировать их в широком интервале температур. Текстильная переработка составляет 90% исходной прочности нити, что дает возможность применять их в качестве тканных материалов.
Борные волокна получают из нитей W диаметром 12 мкм. После выскотемпературного химического осаждения получают волокно с сердцевиной из боридов вольфрама (WB, W2B5 и WB) диаметром 15 -17 мкм, окруженный слоем поликристаллического бора. Волокна бора, покрытые тонким слоем карбида кремния для повышения жаростойкости и защиты от воздействия матрицы, называются борсиком. Волокна бора находят широкое применение в композитах с полимерной и алюминиевыми матрицами. Композиты Al - SiC/БВ имеют преимущество, т.к. могут перерабатываться традиционными металлургическими способами и работать до 640К. БВ обладают наибольшей сдвиговой жесткостью G = 180 Гпа.
Волокна карбидокремния применяются в металлокомпозитах, эксплуатируемых при высоких температурах. Получают парогазоосаждением на W и углеродную подложки. Последние слабо связаны между подложкой и SiG из-за чего имеют пониженную механическую прочность и повышенную чувствительность к поверхностным дефектам. Свойства волокон SiC/W приведены в таблице.
Для конкретных условий эксплуатации практически имеется неограниченный выбор ПКМ, отличающийся составом и свойствами