
- •1. Общая характеристика свойств металлических материалов. Методы исследования строения металлов и сплавов.
- •2. Атомно-кристалическая структура металла. Элементарные ячейки.
- •3. Несовершенства кристаллической решетки реальных металлов.
- •4. Процесс кристаллизации металлов.
- •5.Строение металлического слитка. Особенности строения литого и деформированного металла.
- •6.Полиморфные превращения в металлах.
- •7. Строение типовых двухкомпонентных сплавов.
- •8. Общие сведения о диаграммах состояния. Правило фаз.
- •9.Диаграммы состояния двухкомпонентных сплавов с полной растворимостью компонентов в твердом и жидком состоянии.
- •10. Диаграммы состояния двухкомпонентных сплавов с ограниченной растворимостью компонентов в твердом состоянии и наличии эвтектического превращения.
- •11. Диаграммы состояния двухкомпонентных сплавов с ограниченной растворимостью компонентов в твердом состоянии и наличии перитектического превращения.
- •12. Диаграммы состояния двухкомпонентных сплавов, образующих химическое соединение.
- •13. Связь диаграмм состояния с механическими и технологическими свойствами сплавов.
- •14. Диаграмма состояния железо-цементит (Fe-Fe3c). Основные фазы и структурные составляющие.
- •1. Перетектическая реакция
- •4. Цементит.
- •15. Стабильная диаграмма состояния железо-графит.
- •16. Фазовые превращения при вторичной кристаллизации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.
- •17. Фазовые превращения при вторичной кристаллизации доэвтектоидных, эвтектоидных и заэвтектоидных сталей.
- •18. Серые чугуны. Структура, свойства, область применения.
- •19. Ковкие чугуны. Структура, свойства, область применения.
- •20. Высокопрочные чугуны. Структура, свойства, область применения.
- •22. Классификация, маркировка и применение углеродистых сталей.
- •Маркировка сталей
- •23. Структурные классы легированных сталей. Влияние легирующих элементов на полиморфизм железа.
- •24.Маркировка легированных сталей.
- •25. Перлитное превращение в стали.
- •30.Превращение при нагреве закаленной на мартенсит стали.
- •31.Нагрев при термообработке. Окисление и обезуглероживание поверхности стали.
- •32. Отжиг первого рода.
- •33. Отжиг второго рода и нормализация стали.
- •35.Отпуск стали (технология термообработки).
- •36. Прокаливаемость стали.
- •Схемы, показывающие различную скорость охлаждения по сечению и в связи с этим несквозную прокаливаемость.
- •37. Методы поверхностного упрочнения сталей. Закалка твч.
- •38. Процессы, происходящие при химико-термической обработке металла.
- •39.Цементация. Термообработка стали после цементации.
- •40.Азотирование стали.
- •41.Состав, назначение и термообработка улучшаемых сталей.
- •42.Корозионно стойкие и жаростойкие стали.
- •43.Инструментальные стали. Теплостойкость. Быстрорежущие стали.
- •45. Деформируемые алюминиевые сплавы, упрочняемые термообработкой.
- •46.Деформируемые алюминиевые сплавы, не упрочняемые термообработкой.
- •47.Литейные алюминиевые сплавы.
- •48.Титан и его сплавы.
- •49,50.Медь и сплавы на ее основе. Латуни. Бронзы.
- •51.Строение полимеров. Физическое состояние полимеров.
- •52. Состав, свойства и применение пластмасс.
- •53.Свойства и применение неорганических стекол и ситаллов.
- •XNa2o yCaO zSiO2 ....
- •54.Состав, свойства и применение технической керамики.
- •55.Композиционные материалы на металлической основе.
- •56. Композиционные материалы на неметаллической основе.
Схемы, показывающие различную скорость охлаждения по сечению и в связи с этим несквозную прокаливаемость.
Суменьшением критической скорости
закалки увеличивается и глубина
закаленного слоя, и если Vk будет меньше
скорости охлаждения в центре, то сечение
закалится на сквозь. Если сечение велико
и скорость на поверхности меньше Vk, то
сталь не закалится даже на поверхности.
Для практической оценки прокаливаемости
используют величину -критический
диаметр,
т.е. максимальный диаметр (размер)
образца, который прокаливается насквозь
в данном охладителе. Чем лучше свойства
охладителя тем больше Dкр. (Смотри лаб.
раб. №8). Чтобы не ставить прокаливаемость
в зависимости от способа охлаждения
применяют идеальный
критический диаметр.
Для его определения используют метод
торцевой закалки.
Цилиндрический стальной образец,
нагретый под закалку, охлаждается с
торца струей воды.
Кривая прокаливаемости стали.
Измерив твердость по длине, строят зависимость твердости от расстояния от закаленного торца. В ГОСТах приведены кривые прокаливаемости на базе из 100 и более плавок одной марки стали, указываются верхний и нижний пределы. За границу между закаленной и незакаленной зонами понимают полумартенситный слой (50% мартенсита + .50% троостита). Прокаливаемость учитывают при выборе марки стали.
37. Методы поверхностного упрочнения сталей. Закалка твч.
Конструкционная прочность часто зависит от состояния материала в поверхностных слоях детали. Одним из способов поверхностного упрочнения стальных деталей является поверхностная закалка. В результате поверхностной закалки увеличивается твердость поверхностных слоев изделия с одновременным повышением сопротивления истиранию и предела выносливости. Общим для всех видов поверхностной закалки является нагрев поверхностного слоя детали до температуры закалки с последующим быстрым охлаждением. Эти способы различаются методами нагрева деталей. Толщина закаленного слоя при поверхностной закалке определяется глубиной нагрева. Наибольшее распространение имеют электротермическая закалка с нагревом изделий токами высокой частоты (ТВЧ) и газопламенная закалка с нагревом газово-кислородным или кислородно-керосиновым пламенем.
Закалка токами высокой частоты.
Основан на том, что если в переменное магнитное поле, создаваемое проводником-индуктором, поместить металлическую деталь, то в ней будут индуцироваться вихревые токи, вызывающие нагрев металла. Возникает явление "скин-эффекта", в результате которого, токи концентрируются около поверхности:
x=k(/f)- толщина прокаливаемого слоя; - удельное эл. сопротивление, - магнитная проницаемость, f - частота тока.
Для нагрева на глубину более 2 мм, используются машинные генераторы с частотой 500…8000 Гц, мощностью до 500 кВт. Для тонких слоев - ламповые генераторы с частотой больше 450000 Гц, мощностью до 250 кВт. Глубина закаленного слоя – до 2 мм.
Индукторы изготавливаются из медных трубок, внутри которых циркулирует вода, благодаря чему они не нагреваются. Форма индуктора соответствует внешней форме изделия, при этом необходимо постоянство зазора между индуктором и поверхностью изделия.
После нагрева в течение 3…5 с индуктора, деталь быстро перемещается в специальное охлаждающее устройство – спрейер, через отверстия которого на нагретую поверхность разбрызгивается закалочная жидкость.
Высокая скорость нагрева смещает фазовые превращения в область более высоких температур. Температура закалки при нагреве токами высокой частоты должна быть выше, чем при обычном нагреве.
При правильных режимах нагрева после охлаждения получается структура мелкоигольчатого мартенсита. Твердость повышается на 2…4 HRC по сравнению с обычной закалкой, возрастает износостойкость и предел выносливости.
Перед закалкой ТВЧ изделие подвергают нормализации, а после закалки низкому отпуску при температуре 150…200oС (самоотпуск).
Наиболее целесообразно использовать этот метод для изделий из сталей с содержанием углерода более 0,4 %.
Преимущества метода:
большая экономичность, нет необходимости нагревать все изделие;
более высокие механические свойства;
отсутствие обезуглероживания и окисления поверхности детали;
снижение брака по короблению и образованию закалочных трещин;
возможность автоматизации процесса;
использование закалки ТВЧ позволяет заменить легированные стали на более дешевые углеродистые;
позволяет проводить закалку отдельных участков детали.
Основной недостаток метода – высокая стоимость индукционных установок и индукторов.
Целесообразно использовать в серийном и массовом производстве.
Этому способу ТО подвергают стали: среднеуглеродистые (легированные и нелегированные) (40, 45, 40Х, 40ХН); стали пониженной прокаливаемости (55ПП).