Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копия Informatika_bilety.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
232.66 Кб
Скачать
  1. Основы алгебры логики. Логические выражения. Преобразование логических выражений. (http://ege-go.Ru/temy/logic2/sostavnye-vyskazyvaniya-I-logicheskie-vyrazheniya/)

Математическая логика изучает вопросы применения математических методов для решения логических задач и построения логических схем, которые лежат в основе работы любого компьютера. Суждения в математической логике называют высказываниями или логическими выражениями. Подобно тому, как для описания действий над переменными был разработан раздел математики алгебра, так и для обработки логических выражений в математической логике была создана алгебра высказываний, или алгебра логики.

Алгебра логики очень проста, так как каждая переменная может принимать только два значения: истинно или ложно. Трудность изучения алгебры логики возникает из-за того, что для обозначения переменных принимают символы 0 и 1, которые по написанию совпадают с обычными арифметическими единицей и нулём. Но совпадение это только внешнее, так как смысл они имеют совсем иной.

    Логическая 1 означает, что какое-то событие истинно, в противоположность этому логический 0 означает, что высказывание не соответствует истине, т.е. ложно. Высказывание заменилось на логическое выражение, которое строится из логических переменных (А, В, Х, …) и логических операций (связок).

    В алгебре логики знаки операций обозначают лишь три логические связки ИЛИ, И, НЕ.

    1.Логическая операция ИЛИ. Логическую функцию принято задавать в виде таблицы. В левой части этой таблицы перечисляются все возможные значения аргументов функции, т.е. входные величины, а в правой указывается соответствующее им значение логической функции. Для элементарных функций получается таблица истинности данной логической операции.

Логическое выражение в программировании — конструкция языка программирования, результатом вычисления которой является «истина» или «ложь».

Логическое высказывание - Это утверждение, которому всегда можно поставить в соответствие одно из двух логических значений: ложь или истина. Логическое высказывание принято обозначать заглавными латинскими буквами.

Основные операции над логическими высказываниями

Отрицание логического высказывания — логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний — логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B — логическое высказывание, ложное только тогда, когда B ложно, а A истинно.( посылка следствие)

Равносильность (эквивалентность) двух логических высказываний — логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны. (≡ или ↔.)

  1. Понятие модели. Виды моделей. Моделирование, как метод познания.

Модель - это искусственно созданный объект, дающий упрощенное представление о реальном объекте, процессе или явлении, отражающий существенные стороны изучаемого объекта с точки зрения цели моделирования. Моделирование - это построение моделей, предназначенных для изучения и исследования объектов, процессов или явлений.

     Объект, для которого создается модель, называют оригиналом или прототипом. Любая модель не является абсолютной копией своего оригинала, она лишь отражает некоторые его качества и свойства, наиболее существенные для выбранной цели исследования. При создании модели всегда присутствуют определенные допущения и гипотезы.

     Системный подход позволяет создавать полноценные модели. Особенности системного подхода заключаются в следующем. Изучаемый объект рассматривается как система, описание и исследование элементов которой не выступает как сама цель, а выполняется с учетом их места (наличие подзадач). В целом объект не отделяется от условий его существования и функционирования. Объект рассматривается как составная часть чего-то целого (сам является подзадачей). Один и тот же исследуемый элемент рассматривается как обладающий разными характеристиками, функциями и даже принципами построения. При системном подходе на первое место выступают не только причинные объяснения функционирования объекта, но и целесообразность включения его в состав других элементов. Допускается возможность наличия у объекта множества индивидуальных характеристик и степеней свободы. Альтернативы решения задач сравниваются в первую очередь по критерию "стоимость-эффективность".

     Создание универсальных моделей - это следствие использование системного подхода.

     Моделирование (эксперимент) может быть незаменимо. Мы не можем, например, устроить ядерную катастрофу, чтобы выяснить масштабы возможного заражения, а с помощью компьютера возможен расчет (и достаточно точный) интересующих исследователей параметров.

     Моделирование - исследование явлений, процессов или систем объектов путем построения и изучения их моделей - это основной способ научного познания. В информатике данный способ называется вычислительный эксперимент и основывается он на трех основных понятиях: модель - алгоритм - программа.

     Использование компьютера при моделировании возможно по трем направлениям:

     1. Вычислительное - прямые расчеты по программе.

     2. Инструментальное - построение базы знаний, для преобразования ее в алгоритм и программу.

     3. Диалоговое - поддержание интерфейса между исследователем и компьютером.

– концептуальное моделирование, при котором совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков;

– физическое моделирование, при котором модель и моделируемый объект представляют собой реальные объекты или процессы единой или различной физической природы, причем между процессами в объекте-оригинале и в модели выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;

– структурно-функциональное моделирование, при котором моделями являются схемы (блок-схемы), графики, чертежи, диаграммы, таблицы, рисунки, дополненные специальными правилами их объединения и преобразования;

– математическое (логико-математическое) моделирование, при котором моделирование, включая построение модели, осуществляется средствами математики и логики;

– имитационное (программное) моделирование, при котором логико-математическая модель исследуемого объекта представляет собой алгоритм функционирования объекта, реализованный в виде программного комплекса для компьютера.

Модели, если отвлечься от областей, сфер их применения, бывают трех типов: познавательные, прагматические и инструментальные.

Познавательная модель – форма организации и представления знаний, средство соединение новых и старых знаний. Познавательная модель, как правило, подгоняется под реальность и является теоретической моделью.

Прагматическая модель – средство организации практических действий, рабочего представления целей системы для ее управления. Реальность в них подгоняется под некоторую прагматическую модель. Это, как правило, прикладные модели.

Инструментальная модель – является средством построения, исследования и/или использования прагматических и/или познавательных моделей.

Познавательные отражают существующие, а прагматические – хоть и не существующие, но желаемые и, возможно, исполнимые отношения и связи.