- •Метод эквивалентных сопротивлений и его применений для расчета электрических цепей
- •1 И 2 законы Кирхгофа и их применение для расчета электрических цепей
- •Понятие принципа суперпозиций и его применение для расчета электрических цепей
- •1.5.4 Метод суперпозиции
- •Соединение проводников треугольником и звездой и методы их эквивалентных преобразований
- •Соединение звездой
- •Расчет цепи по законам Кирхгофа
- •Частичные токи и их возникновения. Методика расчета цепей методом наложения.
- •Метод эквивалентных сопротивлений и его применение для расчета(?). Как определяется аналитическим способом равнодействующая пространственной системы электрических цепей.
- •Контурные токи эдс. Расчет цепи методом контурных токов Метод контурных токов.Решение задач
- •Основные понятия
- •Общий план составления уравнений
- •Узловые потенциалы и токи ветвей. Расчет цепей методом узлового напряжения. Метод узловых потенциалов
- •Эквивалентный генератор. Определение эдс и внутреннего сопротивления эквивалентного генератора(эг). Расчет цепей методом эг
- •Четырехполюсники и системы их уравнений.
- •19.1. Основные определения и классификация четырёхполюсников
- •19.1. Основные определения и классификация четырёхполюсников
- •Ферромагнитные материалы, их свойства и области их применения.
- •Магнитный гистерезис , его особенности и возможности. Магнитный гистерезис
- •Описание установки
- •Применение закона Ома и законов Кирхгофа для магнитных цепей.
- •Методика прямого расчета неразветвленной магнитной цепи.
- •Методика обратного расчета неразветвленной обратной цепи.
- •Электрические материалы и их проводимость лектрические материалы. Сопротивление, проводимость.
- •Магнитные поля постоянного тока
- •Коммутация машин постоянного тока
- •34.Условие и способы получения резонанса. Резонансная частота
- •35. Резонанс в последовательном колебательном контуре. Добротность, векторная диаграмма. Характеристическое сопротивление, затухание контура.
- •36. Резонанс (определение). Последовательный и параллельный колебательные контуры. Резонансные кривые в относительных единицах для последовательного колебательного контура.
- •Последовательный резонанс
- •Резонансная частота, волновое сопротивление и добротность кк
- •Признаки резонанса напряжения, частотные характеристики, сопротивление и резонансы кривые . Мощность при резонансе напряжений
- •Параллельный Колебательный контур, принципиальная схема и основные характеристики
- •Параллельный кк, условие резонанса токов Параллельный колебательной контур. Резонанс токов
- •Расчет цепей при наличии взаимной индуктивности
- •Последовательное согласное соединение катушек
- •Последовательное встречное соединение
- •Параллельное согласное соединение
- •Параллельное встречное соединение
- •Расчет разветвлённых цепей при наличии взаимной индуктивности
- •"Развязывание" магнитосвязанных цепей
- •Параллельное соединение двух индуктивно связанных катушек и их эквивалентное комплексное сопротивление. Параллельное соединение индуктивно связанных катушек
- •Развязка индуктивных связей
- •Воздушный трансформатор
- •Параллельное соединение индуктивно связанных элементов.
- •Свойства полупроводников Общие понятия.
- •Свойства полупроводников.
- •Работа диода и его устройство
- •Стабилитроны
- •Принцип работы тиристора и динистора
- •Назначение и принцип работы транзистора
- •Выпрямительные устройства
- •Дросселя и трансформаторы Дроссель электрический
- •3.6. Трансформаторы
1.5.4 Метод суперпозиции
Применяется только для линейных цепей. Основан на использовании принципа суперпозиции.
Принцип суперпозиции: ток, протекающий под воздействием нескольких ЭДС, равен алгебраической сумме частичных токов, протекающих от каждой из ЭДС в отдельности.
Алгоритм:
Оставляем в цепи одну ЭДС, все остальные полагаем равными нулю, и рассчитываем частичные токи, протекающие под воздействием этой ЭДС.
Оставляем в цепи другую ЭДС, остальные полагаем равными нулю, и рассчитываем частичные токи.
И так далее столько раз, сколько ЭДС.
Действительный ток, протекающий под воздействием всех ЭДС, определяем как алгебраическую сумму частичных токов.
Этот метод рационально использовать, когда число ЭДС много меньше числа ветвей. Рассмотрим пример расчета:
Рис. 1.9. Исходная схема (а) и схемы для определения частичных токов (б – г)
–
рассчитываем цепь и находим
(рис.
1.9, б);
–
рассчитываем цепь и находим
(рис.
1.9, в);
–
рассчитываем цепь и находим
(рис.
1.9, г);
–
на заключительном этапе определяем
Знаки у частичных токов берем с учетом их направления.
Соединение проводников треугольником и звездой и методы их эквивалентных преобразований
Соединение треугольником
При соединении треугольником конец одной обмотки соединяется с началом другой. Таким образом, образуется замкнутый контур.
В
таком соединении каждая фаза находится
под линейным напряжением, то есть
линейные и фазные напряжения равны
А фазные и линейные токи соотносятся как
Соединение звездой
При соединении обмоток звездой все три фазы имеют одну общую точку – ноль. При этом такая система может быть трехпроводной или четырехпроводной. В последнем случае используется нулевой провод. Нулевой провод не нужен, если система симметрична, то есть токи в фазах такой системы одинаковы. Но если нагрузка несимметрична, то фазные токи различны, и в нулевом проводе возникает ток, который равен векторной сумме фазных токов
Также, нулевой провод может выступать в роле одной из фаз, если она выйдет из строя, это предотвратит выход из строя всей системы. Правда нужно учитывать, что нулевой провод не рассчитан на подобные нагрузки, и в целях экономии металла и изоляции он изготавливает под более малые токи, чем в фазах.
В трехфазных цепях существуют так называемые фазные и линейные напряжения и токи.
Фазное напряжение – это разность потенциалов между нулевой точкой и линейным проводом. То есть, проще говоря, фазное напряжение - это напряжение на фазе.
Линейное напряжение – это разность потенциалов между линейными проводами.
При соединении звездой фазные и линейные напряжения соотносятся как
А фазные и линейные токи при симметричной нагрузке одинаковы
Расчет цепи по законам Кирхгофа
Существует большое разнообразие цепей преобразующих ту или иную энергонесущую материю. Какова бы ни была энергонесущая материя (например, электрический ток), и в каком бы режиме ни функционировала преобразующая энергию цепь, существует ограниченный набор универсальных методов для их анализа и расчета. Цель расчета цепей состоит в уточнении величин токов и падений напряжения на элементах во всех режимах работы. Познакомимся с наиболее универсальными методами.
