- •Вопросы на экзамен по электротехнике.
- •4. Одной из основных характеристик источников электрической энергии является эдс. Количественно эдс характеризуется работой а, которая совершается при перемещении заряда в 1 Кл в пределах источника.
- •Первый закон Кирхгофа
- •12. Рассмотрим процесс подключения последовательной r-c цепи к источнику постоянной эдс e (рис. 5 а)).
- •20. Полупроводниковые резисторы
- •22. Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе. Принцип действия стабилитрона
- •Основные электрические параметры, характеризующие стабилитрон
- •29. Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:
29. Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния:
«закрытое» состояние — состояние низкой проводимости;
«открытое» состояние — состояние высокой проводимости.
Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров (с тремя электрическими выводами — анодом, катодом и управляющим электродом) — управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод.
В двухвыводных приборах, — динисторах переход прибора в проводящее состояние происходит, если напряжение между его анодом и катодом превысит напряжение открывания.
Также тиристоры применяются в ключевых устройствах, например, силового электропривода.
Существуют различные виды тиристоров, которые подразделяются, главным образом:
по способу управления;
по проводимости:
тиристоры, проводящие ток в одном направлении (например, тринистор, изображённый на рисунке);
тиристоры, проводящие ток в двух направлениях (например, симисторы, симметричные динисторы).
Вольт-амперная характеристика (ВАХ) тиристора нелинейна и показывает, что сопротивление тиристора отрицательное дифференциальное. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала. Тиристор остаётся в открытом состоянии до тех пор, пока протекающий через него ток превышает некоторую величину, называемую током удержания.
30. Динистором, или, по-другому, диодным тиристором, называют переключательный компонент с двумя выводами, который переходит в открытое состояние при превышении определённого напряжения, которое прикладывают между его выводами. Динисторы содержат три электронно-дырочных перехода. Схематичное изображение структуры динистора дано на рис. 7.1.
Вывод от внешней зоны n2 называют катодом, а от зоны p1 – анодом. Зоны n1 и p2 носят название баз динистора. Переход между зонами p1, n1 и p2, n2 именуют эмиттерным, а между зонами n1 и p2 – коллекторным переходом.
Если от источника питания к аноду динистора приложим небольшое отрицательное напряжение, а к катоду положительное напряжение, то центральный коллекторный переход будет открыт, а крайние эмиттерные переходы станут закрыты. Зоны n1 и p2 не могут преодолеть, поступающие из анода и катода основные носители зарядов, а, следовательно, они не достигнут базы динистора. В результате через динистор течёт небольшой обратный ток, обусловленный неосновными носителями заряда, и динистор закрыт. Если к аноду динистора приложим очень большое отрицательное напряжение, а к катоду – высокое положительное напряжение, то произойдёт лавинный пробой, что видно на вольтамперной характеристике динистора, показанной на рис. 7.2.
I – участок открытого состояния динистора, на котором его проводимость высока;
II – участок отрицательного сопротивления;
III – участок пробоя коллекторного перехода;
IV – участок в прямом включении, на котором динистор заперт, и приложенное к его выводам напряжение меньше, чем необходимо для возникновения пробоя;
V – участок обратного включения динистора;
VI – участок лавинного пробоя.
Если от источника питания к аноду динистора приложим небольшое положительное напряжение, а к катоду незначительное отрицательное напряжение, то коллекторный переход будет закрыт, а эмиттерные переходы станут открыты. Носители зарядов поступают из области катода n2 в зону p2 (электроны), а из области анода p1 в зону n1 (дырки). В указанных зонах баз носители заряда уже станут неосновными, и в результате в этих зонах возникает рекомбинация носителей зарядов, и из-за неё концентрации свободных носителей зарядов станут меньше. Поле коллекторного перехода будет ускоряющим для ставших неосновными носителей заряда, которые ввиду инжекции его преодолевают и оказываются в зонах, где они вновь будут основными. В областях p1 и n2эти носители зарядов снова станут неосновными и вновь рекомбинируют. По причине рекомбинаций носителей зарядов проводимость динистора на участке IV мала и протекающий через него обратный ток также мал.
Если начать увеличивать постоянное напряжение, прикладываемое к динистору в прямом включении, то возрастает ширина коллекторного перехода и скорость носителей заряда, и становятся меньше интенсивности рекомбинаций, а прямой ток через динистор медленно возрастает. Чем больше будет прямое напряжение, тем интенсивнее станет ударная ионизация, порождающая новые носители заряда, что при определённом напряжении включения приведёт к лавинному пробою коллекторного перехода. Пробой сопровождает резкое увеличение проводимости динистора в прямом включении. Динистор открывается, и на нём будет падать небольшое остаточное напряжение.
Динисторы применяют в регуляторах и переключателях, чувствительных к изменениям напряжений. Симисторы, в отличие от обычных тиристоров, проводят ток анод-катод при протекании тока по управляющему электроду, как в прямом направлении, так и в обратном. В результате этого их вольтамперная характеристика симметрична, что отражено на рис. 7.4.
Таким образом, на вольтамперной характеристике каждого симистора присутствуют два участка отрицательного дифференциального сопротивления.
Структура симистора содержит пять слоёв, что отражено на рис. 7.5.
К управляющему электроду, который отведён от зоны n3, подсоединим вывод отрицательного напряжения, полученного от источника питания, относительно вывода от зон p2, n4, в результате чего электроны из зоны n3 инжектируют в зону p2. Кроме того, приложим напряжение от источника питания положительным полюсом к зонам p1, n1, а отрицательным полюсом к зонам p2, n4. Переходы П1 и П4 открыты, и играют роль эмиттерных переходов, а переход П2 закрыт и исполняет обязанности коллекторного перехода, и через симистор по выводам анод-катод протекает ток.
Теперь поменяем полярность и приложим напряжение отрицательным полюсом к зонам p1, n1, а положительным полюсом к зонам p2, n4. Переходы П1 и П4 закрыты, и переход П1 выполняет функции коллекторного перехода, а переход П2 открыт и служит коллекторным переходом, и через симистор и в этом случае по выводам анод-катод течёт ток.
Симисторы нашли широкое применение в устройствах регулирования скорости вращения электродвигателей, в системах освещения, в электронагревателях, в преобразовательных установках.
31. У обычных тиристоров можно управлять моментом включения, но нельзя управлять моментом окончания токовой проводимости. В связи с этим использование тиристоров в цепях постоянного тока, а также в инверторах требует применения специальных средств (схемы индуктивно-емкостных контуров коммутации), гасящие ток.
В запираемых тиристорах положительным управляющим импульсом обеспечивается перевод тиристора в проводящее состояние, а отрицательным импульсом - выключение тиристора.
ВАХ запираемого тиристора аналогична ВАХ обычного тиристора, аналогичен и процесс включения.
Запираемый тиристор имеет такую же четырехслойную структуру, что и обычный тиристор. Поэтому к ним применим транзисторный аналог. При подаче отрицательного импульса тока управления в базовый слой структуры уменьшается заряд в обоих базах транзисторов, при этом снижении все составляющие тока тиристора, и он включается.
Переходный процесс выключения током в цепи управления происходит в три этапа:
1) при протекании тока IA=const подается ток в цепи управления. При этом Iк=(Iа-Iу). Чтобы первый этап перешел во второй необходимо определенное значение тока запирания намного большего значения тока включения (Iу закр>>Iу вкл). Значение тока запирания и тока анода связаны значением коэффициента усиления включения
Обычно G@3¸5;
Рис. 7.10. Переходные процессы при выключении запираемого тиристора
2) второй этап характеризуется резким снижением токов IА и IК. В течение этого этапа происходит дальнейшее снижение концентрации носителей в обеих базах структуры. Этап заканчивается тогда, когда эта концентрация становится равной нулю;
3) на третьем этапе происходит рассасывание не основных носителей и ток тиристора снижается до нуля.
Основное отличие запираемых тиристоров от обычных (не запираемых) заключается в ином расположении горизонтальных и вертикальных слоев с n- p-проводимостями.
Наибольшему изменению подверглось устройство катодного n-слоя, он разбит на несколько сотен элементарных ячеек равномерно распределенных по площади и соединенных параллельно. Такое исполнение вызвано стремлением обеспечить равномерное снижение по всей площади полупроводниковой структуры при включении прибора.
Базовый p-слой, не смотря на то, что выполнен как единое целое, имеет большое число контактов управляющего перехода, так же равномерно распределенных по площади и соединенных параллельно. Базовый n- слой выполнен аналогично, соответственно условиям обычного тиристора.
Анодный слой имеет шунты (зоны с n-типом проводимости), соединяющие n-базу с анодным контактом через небольшое распределение сопротивления. Анодные шунты предназначены для снижения времени включения прибора за счет улучшения условий извлечения зарядов из базовой n-области.
Запираемые тиристоры изготавливают в штыревых и таблеточных корпусах, устанавливаемых на типовых охладителях.
32. Фототиристор входит в число основных активных элементов полупроводниковых преобразователей электроэнергии. Их появление среди прочих устройств – результат развития и модернизации силовых полупроводниковых приборов. Применение фототиристоров в электротехнике и электроэнергетике позволяет при помощи простых и надёжных устройств решать стратегические проблемы. Наиболее эффективно фототиристоры используются в устройствах с последовательным соединением приборов и высоким уровнем электромагнитных помех.
Фототиристоры представляют собой оптоэлектронные полупроводниковые приборы, схожие по структуре с обычными тиристорами. Единственное отличие от последних заключается в том, что включаются они не электрическими импульсами, а падающим светом. Оптический вход фототиристора позволяет подключать оптоволоконный кабель любой длины.
Чаще всего фототиристоры изготавливают из кремния. Их спектральные характеристики схожи с другими кремниевыми фоточувствительными элементами. Скорость отклика на свет составляет менее 1 мкс. Кремниевый монокристалл располагается на медном основании. Приборы выпускаются как с открытым для освещения кристаллом, так и со встроенным в корпус светодиодом.
Фототиристор имеет более совершенную конструкцию, чем обычный тиристор, и обладает целым рядом преимуществ:
прямое управление импульсами света;
высокая устойчивость к помехам;
простота обслуживания;
надёжность и долговечность.
Современный фототиристор оснащён интегрированной самовосстанавливающейся защитой от перенапряжений. Защитная структура при работе в критическом режиме позволяет прервать неконтролируемые процессы. В этих целях в кристалле образована область с пониженным напряжением лавинного пробоя. Возникновение тока во внутренней структуре вызывает полное отпирание прибора. После окончания импульсного воздействия структура устройства восстанавливается. Благодаря такой защите тепловое разрушение многослойной структуры прибора исключено.
Фототиристоры имеют высокий уровень КПД, они устойчивы к многократным перегрузкам тока и напряжения. Работа фототиристора не изменяется под воздействием высоких электромагнитных помех и прочих внешних факторов.
Область применения тиристоров с оптическим управлением достаточно широка:
высоковольтные преобразовательные устройства линий электропередач;
компенсаторы реактивной мощности;
импульсные генераторы;
силовые установки с цепями постоянного и переменного тока.
Фототиристоры применяются для установки в самых различных источниках излучения (лампы накаливания, импульсные газоразрядные лампы, квантовые генераторы, светоизлучательные светодиоды). Необходимая для функционирования прибора величина светового потока определяется спектральным составом излучения, коэффициентом отражения и поглощения монокристалла, скоростью нарастания прямого напряжения.
Фототиристоры – это уникальное сочетание эксплуатационных характеристик: оптическое управление, интегрированные защитные функции, надёжность. Благодаря отменным параметрам оптический тиристор занимает ведущее место в перечне компонентов для электрооборудования.
Повышенная помехоустойчивость оптронных тиристоров относится к их потенциальным преимуществам. При использовании силовых оптотиристоров в регулируемых преобразователях электрической энергии не снижаются требования к качеству и надежности работы их систем импульсно-фазового управления (СИФУ). Недопустимы сбои в СИФУ и (или) подача сигналов управления при отрицательных напряжениях на вентилях. Выпрямители и регуляторы на оптронных тиристорах нельзя выполнять с системами управления и регулирования, осуществляющими непрерывную подачу управляющих сигналов одновременно на все или часть вентилей, например пакетную на повышенной частоте без обязательного контроля полярности напряжения на них.
33.
34. Тиристоры являются наиболее мощными электронными ключами, используемыми для коммутации высоковольтных и сильноточных (сильнотоковых) цепей. Однако они имеют существенный недостаток – неполную управляемость, которая проявляется в том, что для их выключения необходимо создать условия снижения прямого тока до нуля. Это во многих случаях ограничивает и усложняет использование тиристоров.
Для устранения этого недостатка разработаны тиристоры, запираемые сигналом по управляющему электроду G. Такие тиристоры называют запираемыми (GTO – Gate turn-off thyristor) или двухоперационными.
Запираемые тиристоры (ЗТ) имеют четырехслойную р-п-р-п структуру, но в то же время обладают рядом существенных конструктивных особенностей, придающих им принципиально отличное от традиционных тиристоров – свойство полной управляемости. Статическая ВАХ запираемых тиристоров в прямом направлении идентична ВАХ обычных тиристоров. Однако блокировать большие обратные напряжения запираемый тиристор обычно не способен и часто соединяется со встречно-параллельно включенным диодом. Кроме того, для запираемых тиристоров характерны значительные падения прямого напряжения. Для выключения запираемого тиристора необходимо подать в цепь управляющего электрода мощный импульс отрицательного тока (примерно 1:5 по отношению к значению прямого выключаемого тока), но короткой длительности (10-100 мкс).
Запираемые тиристоры также имеют более низкие значения предельных напряжений и токов (примерно на 20-30 %) по сравнению с обычными тиристорами.
