Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на экзамен по электротехнике (Автосохраненный)1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
527.08 Кб
Скачать

22. Полупроводниковый прибор, каким является диод Зенера или как его еще называют стабилитрон, служит для стабилизации напряжения на выходе. Принцип действия стабилитрона

Принцип работы прибора заключается в подаче на диод через резистор запирающего напряжения, величина которого превышает величину напряжения пробоя самого диода. До того времени, пока не наступил момент совершения пробоя, через стабилитрон идут токи утечки величина, которых очень незначительна, в тоже время сопротивление прибора очень высокое.

В момент совершения пробоя величина тока резко повысится, а значение дифференцированного сопротивления понизится до самых малых величин. Благодаря этому свойству режим пробоя характеризуется стабильным значением напряжения в широких границах обратного тока. Иными словами стабилитрон служит для распределения тока резистора, на который приходится избыток напряжения, а также тока, составляющего полезную нагрузку.

Рис. №1. Вольт-амперная характеристика (ВАХ) стабилитрона. Для работы стабилитрона используются участки ВАХ, на которых при существенных изменениях тока, напряжение практически  не изменяется, что бывает при обратном подключении прибора на участке электрического пробоя.

Рис.№2. Стабилитрон с резистором

Рис. №3. Стабилитрон, состоящий из двух последовательно-встречно подключенных диодов, служит для ограничения напряжения обеих полярностей.

 

Основа действия прибора строится на двух механизмах – это туннельный пробой и p-n-переход, его называют эффект Зенера и лавинный пробой p-n-перехода.

Основные электрические параметры, характеризующие стабилитрон

23. Туннельный диод – это полупроводниковый диод, в котором используется явление туннельного пробоя при включении в прямом направлении. Характерной особенностью туннельного диода является наличие на прямой ветви вольтамперной характеристики участка с отрицательным дифференциальным сопротивлением.

Для примера на рис. 1.12 показана прямая ветвь вольтамперной характеристики германиевого туннельного усилительного диода 1И104А (Iпр.макс = 1 мА – постоянный прямой ток, Uобр.макс = 20 мВ), предназначенного для усиления в диапазоне волн 2…10 см (это соответствует частоте более 1 ГГц).

Рис. 1.12 ВАХ туннельного диода

Общая емкость диода в точке минимума характеристики составляет 0,8…1,9 пФ. Туннельные диоды могут работать на очень высоких частотах  более 1 ГГц. Наличие участка с отрицательным дифференциальным сопротивлением на вольтамперной характеристике обеспечивает возможность использования туннельных диодов в качестве усилительного элемента и в качестве основного элемента генераторов. В настоящее время туннельные диоды используются именно в этом качестве в области сверхвысоких частот.

Светодиоды (электролюминесцентные диоды) преобразуют энергию электрического поля в нетепловое оптическое излучение, называемое электролюминесценцией. Основой светодиода является р-n-переход, смещаемый внешним источником напряжения в проводящем направлении. При таком смещении электроны из n-области полупроводника инжектируют в р-область, где они являются неосновными носителями, а дырки  во встречном направлении. В последующем происходит рекомбинация избыточных неосновных носителей с электрическими зарядами противоположного знака. Рекомбинация электрона и дырки соответствует переходу электрона из энергетического уровня Ее в энергетическое состояние уровня Еу с меньшим запасом энергии.

В германии и кремнии ширина запрещенной зоны сравнительно невелика и поэ-тому выделяемая при рекомбинации энергия передается в основном кристаллической решетке в виде тепла. Рекомбинационные процессы в арсениде галлия (GaAs), фосфиде галлия (GaP), карбиде кремния (SiC), имеющих большую ширину запрещенной зоны (например, для GaAs A? = 1,38 эВ), сопровождаются выделением энергии в виде квантов света, которые частично поглощаются объемом полупроводника, а частично излучаются в окружающее пространство. Поэтому внешний квантовый выход, фиксируемый зрительно, всегда меньше внутреннего.

Основными характеристиками светодиодов являются вольтамперная характеристика, а также зависимости мощности и яркости излучения от величины прямого тока. Мощность и яркость излучения во многом определяются конструкцией светодиода. Чем больший ток можно пропускать через диод при допустимом его нагреве, тем больше мощность и яркость излучения

К основным параметрам светодиода относятся мощность излучения Р, длина волны излучаемого света  и КПД. Длина световой волны, определяющая цвет свечения, зависит от разности энергий, между которыми осуществляется переход электронов.

Светодиоды применяются для индикации и вывода информации в микроэлектронных устройствах. Управляемые светодиоды (с подвижной границей светящегося поля) используются для замены стрелочных приборов как аналоги оптических индикаторов настройки радиоаппаратуры. Светодиоды с несколькими светящимися полями позволяют воспроизводить цифры от 0 до 9. Кроме того, светодиоды применяются как источники излучения в оптронах – приборах бурно развивающейся оптоэлектроники.

Фотодиод  полупроводниковый фотоэлектрический прибор с внутренним фото-эффектом, отображающим процесс преобразования световой энергии в электрическую. Внутренний фотоэффект заключается в том, что под действием энергии светового излучения в области p-n-перехода происходит ионизация атомов основного вещества и примеси, в результате чего генерируются пары носителей заряда  электрон и дырка. Во внешней цепи, присоединенной к р-n-переходу, возникает ток, вызванный движением этих носителей (фототок).

Фотодиоды могут работать в двух режимах: вентильном (фотогенераторном) и фотодиодном (фотопреобразовательном). В отличие от вентильного, фотодиодный режим предполагает наличие внешнего источника питания (смещения).

При контакте двух полупроводников n- и р-типов на их общей границе создается контактная разность потенциалов. При отсутствии светового потока и нагрузки диффузионная составляющая тока р-n-перехода, уравновешивается дрейфовой составляющей тока, поэтому общий ток через переход равен нулю.

При освещении полупроводника в области р-n-перехода генерируются дополнительные пары носителей заряда. Поле объемного заряда р-n-перехода «разделяет» эти пары: дырки дрейфуют в р-область, а электроны – в n-область, т. е. происходит перемещение дополнительно возникших неосновных носителей. В результате плотности дрейфовых составляющих токов, определяемые равенствами (1.8), (1.9), возрастают, а следовательно, дрейфовый ток получает некоторое приращение, называемое фототоком Iф. При этом полный дрейфовый ток представляет собой, в соответствии с выражением (1.10), тепловой ток Io, обусловленный неосновными носителями при отсутствии освещения. Поскольку в области полупроводника p-типа накапливаются избыточные носители с положительным зарядом, а в области полупроводника n-типа – с отрицательным зарядом, то между внешними электродами появляется разность потенциалов представляющая собой фотоЭДС Еф. Эта ЭДС уменьшает высоту потенциального барьера, вызывая тем самым увеличение диффузионной составляющей тока. ФотоЭДС не превышает значения, численно равного ширине запрещенной зоны полупроводника. Такой режим используется, в частности, в солнечных батареях.

24. Транзистор, назначением которого является усиление мощности электрических сигналов, представляет собой полупроводниковый пробор с тремя чередующимися слоями полупроводника разного вида проводимости, на границе раздела которых образуется два р-n-перехода. Действие биполярного транзистора основано на использовании носителей заряда обоих знаков (дырок и электронов). Биполярный транзистор является наиболее распространенным активным полупроводниковым прибором.

Устройство транзистора. Биполярный транзистор в своей основе содержит три слоя полупроводника (р-n или n-р-n). Каждый слой полупроводника через невыпрямляющий контакт металл-полупроводник подсоединен к внешнему выводу. Средний слой и соответствующий вывод называют базой, один из крайних слоев и соответствующий вывод называют эмиттером, а другой крайний слой и соответствующий вывод-коллектором.

На рис. 1.13, а приведено схематическое изображение структуры транзистора типа n-р-n и два варианта условного графического обозначения (рис. 1.13, б). Транзистор типа р-n-р устроен аналогично, упрощенное изображение его структуры дано на рис. 1.14, а, вариант условного графического обозначения – на рис. 1.14, б. Транзистор называют биполярным, так как в процессе протекания электрического тока участвуют носители электричества двух знаков – электроны и дырки.

Рис. 1.13 Устройство (а) и обозначение транзистора типа n-р-n (б)

Но в различных типах транзисторов роль электронов и дырок различна.

Транзисторы типа n-р-n более распространены в сравнении с транзисторами типа р-n-р, так как обычно имеют лучшие параметры. Это объясняется следующим образом: основную роль в электрических процессах в транзисторах типа n-р-n играют электроны, а в транзисторах типа р-n-р – дырки. Электроны же обладают подвижностью в два-три раза большей, чем дырки и поэтому быстродействие транзисторов типа n-р-n выше.

Рис. 1.14 Устройство (а) и обозначение транзистора типа р-n-р (б)

25. Систему, совершающую колебания, называют осциллятором. То есть осцилляторы — это такие системы, в которых периодически повторяется какой-нибудь изменяющийся показатель или несколько показателей. Само же слово «осциллятор» происходит от латинского «oscillo» - качаюсь.

Осцилляторы играют важную роль в физике и технике, ведь практически любая линейная физическая система может быть описана как осциллятор. Примерами простейших осцилляторов могут служить колебательный контур и маятник. Электрические осцилляторы преобразуют постоянный ток в переменный, и создают колебания требуемой частоты с помощью схемы управления.

На примере колебательного контура, состоящего из катушки индуктивностью L и конденсатора емкостью C, можно описать базовый процесс функционирования электрического осциллятора. Заряженный конденсатор, сразу после соединения его выводов с катушкой, начинает разряжаться через нее, при этом энергия электрического поля конденсатора постепенно преобразуется в энергию электромагнитного поля катушки.

Когда конденсатор полностью разрядится, вся его энергия перейдет в энергию катушки, после чего заряд продолжить двигаться через катушку, и перезарядит конденсатор в противоположной полярности, чем была вначале.

Далее конденсатор начнет снова разряжаться через катушку, но в обратном направлении и т. д. - каждый период колебаний в контуре процесс будет повторяться, пока колебания не затухнут из-за рассеивания энергии на сопротивлении провода катушки и в диэлектрике конденсатора.

Так или иначе, колебательный контур в данном примере является простейшим осциллятором, так как в нем периодически изменяются следующие показатели: заряд в конденсаторе, разность потенциалов между обкладками конденсатора, напряженность электрического поля в диэлектрике конденсатора, ток через катушку, индукция магнитного поля катушки. При этом имеют место свободные затухающие колебания.

Чтобы колебания осциллятора стали незатухающими, необходимо восполнять рассеиваемую электроэнергию. При этом для поддержания постоянной амплитуды колебаний в контуре нужно контролировать поступающую электроэнергию, чтобы амплитуда не снижалась ниже и не росла выше заданной величины. Для достижения этой цели в схему вводят цепь обратной связи.

Таким образом, осциллятор превращается в схему усилителя с положительной обратной связью, где выходной сигнал частично подается на активный элемент схемы управления, в результате работы которой в контуре поддерживаются незатухающие синусоидальные колебания постоянной амплитуды и частоты. То есть синусоидальные осцилляторы работают за счет притока энергии от активных элементов к пассивным, с поддержанием процесса цепью обратной связи. Колебания имеют слабо изменяющуюся форму.

Осцилляторы бывают:

  • с положительной или отрицательной обратной связью;

  • с синусоидальной, треугольной, пилообразной, прямоугольной формой сигнала; низкой частоты, радиочастоты, высокой частоты и т. д.;

  • RC, LC – осцилляторы, кристаллические осцилляторы (кварц);

  • осцилляторы постоянной, переменной или перестраиваемой частоты.

26. Работа униполярных транзисторов основана на использовании носителей заряда одного знака: либо электронов, либо дырок. В биполярных транзисторах работают оба типа носителей заряда: инжекция носителей одного знака сопровождается компенсацией образующегося заряда носителями другого знака. Термин «полевые» характеризует механизм управления током – с помощью электрического поля (а не током базы как в биполярных транзисторах). В зарубежной литературе полевые транзисторы носят название FET (field effect transistors). Униполярные транзисторы имеют несколько разновидностей: Полевой транзистор Полевой транзистор МДП-транзистор с управляющим p-n переходом с индуцированным каналом со встроенным каналом Каждый из указанных видов полевых транзисторов может быть как n- , так и p- типа проводимости. Униполярные транзисторы с каналом p-типа принципиальных отличий от n- канальных не имеют, однако уступают полевым транзисторам n-типа по частотным свойствам, шумам и стабильности. На частотные свойства помимо паразитных емкостей влияет подвижность носителей заряда. Так для кремния (Si) подвижность электронов μn = 1400 см2 /В·с, а подвижность дырок μp = 500 см2 /В·с.

27. Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого электрически изолирован от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой диоксида кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

28. Биполярный транзистор с изолированным затвором (БТИЗ, англ. Insulated-gate bipolar transistorIGBT) — трёхэлектродный силовой полупроводниковый прибор, сочетающий два транзистора в одной полупроводниковой структуре: биполярный (образующий силовой канал) и полевой (образующий канал управления)[1]. Используется, в основном, как мощный электронный ключ в импульсных источниках питанияинверторах, в системах управления электрическими приводами .

Каскадное включение транзисторов двух типов позволяет сочетать их достоинства в одном приборе: выходные характеристики биполярного (большое допустимое рабочее напряжение и сопротивление открытого канала пропорционально току, а не квадрату тока, как у полевых) и входные характеристики полевого (минимальные затраты на управление). Управляющий электрод называется затвором, как у полевого транзистора, два других электрода — эмиттером и коллектором, как у биполярного[2][3].

Выпускаются как отдельные БТИЗ, так и силовые сборки (модули) на их основе, например, для управления цепями трёхфазного тока.