Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Вопросы на экзамен по электротехнике (Автосохраненный)1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
527.08 Кб
Скачать

4. Одной из основных характеристик источников электрической энергии является эдс. Количественно эдс характеризуется работой а, которая совершается при перемещении заряда в 1 Кл в пределах источника.

Графически ЭДС изображают стрелкой в кружке. Направление стрелки совпадает с направлением ЭДС. Перемещение заряда определяет ток источника. Прохождение тока сопровождается потерями на нагрев источника. Количественно потери удобно определять внутренним сопротивлением Rвн. Поэтому условное графическое обозначение источника ЭДС представляет последовательное включение ЭДС Е и внутреннего сопротивления Rвн. Символами 1 – 1’ обозначаются зажимы источника. Разность потенциалов на зажимах источника называется напряжением U [B]. Стрелками показываются положительные направления тока и напряжения. Когда ключ К разомкнут, ток в цепи равен нулю и напряжение на зажимах источника равно ЭДС. Замыкаем ключ К. В цепи возникнет ток:

  При этом напряжение на зажимах источника будет равно:

  Если у источника ЭДС Rвн = 0, то вольтамперная характеристика его будет в виде прямой . Такой источник называют идеальным. Напряжение на зажимах такого источника не зависит от тока. Если у некоторого источника увеличивать Е и Rвн до бесконечности,  Такой источник питания называют источником тока. Ток источника не зависит от сопротивления нагрузки. Реальный источник тока имеет конечные значения Е и Rвн.

При расчете электрических цепей реальный источник электрической энергии с конечными Е и Rвн заменяют источником ЭДС или источником тока. Источники питания могут иметь постоянную ЭДС – Е или переменную е(t) , изменяющуюся во времени по заданному закону. В первом случае в цепи протекает постоянный ток и она называется цепью постоянного тока. Во втором случае ток i(t) и напряжение u(t) переменные, поэтому цепь называется цепью переменного тока.  В электротехнике чаще других применяется синусоидальные ток и напряжение.

5. Приемники электрической энергии делятся на пассивные и активные. Пассивными называют приемники в которых не возникает ЭДС. Вольтамперные характеристики пассивных приемников проходят через начало координат. При отсутствия напряжения ток этих элементов равен нулю. Основной характеристикой пассивных элементов является сопротивление. Пассивные элементы, сопротивление которых не зависит от приложенного напряжения называются линейными. Реально таких элементов не существует. Но весьма близки к ним резисторы, реостаты, лампы накаливания и др. Зависимость напряжения от тока в таких элементах определяется законом Ома, т.е. U = I*R, где R – сопротивление элемента. Эта зависимость не меняется, если напряжение и ток – переменное. Основным параметром индуктивного элемента является индуктивность – L. Единица измерения – генри [Г]. Если через индуктивность L протекает постоянный ток I, то в ней возникает постоянное во времени потокосцепление самоиндукции. Будем полагать, что элемент L идеальный, т.е. сопротивление витков r отсутствует. Очевидно, что при этом падение напряжения на элементе равно нулю. Кроме пассивных, в электротехнике применяются активные приемники. К ним относятся электродвигатели, аккумуляторы в процессе их заряда и др. В цепи переменного тока при определенных условиях роль активных элементов выполняют индуктивность и емкость. В активных элементах возникает противо – ЭДС Е. Приложенное к приемнику напряжение уравновешивается противо-ЭДС и падением напряжения на сопротивлении элемента, т.е.:

6.  В элементах реальных электротехнических устройств(электрических цепях) происходят достаточно сложные процессы протекания токов проводимости, токов смещения, выделения тепловой энергии, наведения ЭДС, накопления и перераспределения энергии электрического и магнитного полей и т. п. Для того чтобы можно было математически описать эти процессы, в теории цепей пользуются расчетными схемами (схемами замещения), вводя в них резистивные, индуктивные и емкостные элементы. С помощью резистивного элемента учитывают выделение теплоты в реальном элементе; с помощью индуктивного элемента — наведение ЭДС и накопление энергии в магнитном поле; с помощью емкостного элемента — протекание токов смещения и накопление энергии в электрическом поле.  Каждый элемент реальной электрической цепи на схеме замещения можно представить той или иной совокупностью идеализированных схемных элементов. Так, резистор для низких частот можно представить одним ре-зистивным элементом R (рис. 1.14, а). Для высоких частот тот же резистор должен быть представлен уже иной схемой (рис. 1.14, б). В ней малая (паразитная) индуктивность Lп учитывает магнитный поток, сцепленный с резистором, а малая паразитная емкость Cп учитывает протекание тока смещения между зажимами резистора. Конденсатор на низких частотах замещают одним емкостным элементом (рис. 1.14, в), а на высоких частотах конденсатор представляют схемой (рис. 1.14, г). В этой схеме резистор Rп учитывает потери в неидеальном диэлектрике конденсатора, a Lп паразитная индуктивность подводящих контактов.  Индуктивную катушку в первом приближении можно представитьодним индуктивным элементом L (pис. 1.14, д). Более полно она может быть представлена схемой (рис. 1.14, е). В ней R учитывает тепловые потери в сопротивлении обмотки и в сердечнике, на котором она намотана, а паразитная емкость Cп учитывает токи смещения между витками катушки.   Обобщенно можно сказать, что при составлении схемы замещения реальных элементов цепи и цепи в целом в нее входят те идеализированные схемные элементы, с помощью которых описываются основные процессы в реальных элементах цепи, а процессами, являющимися относительно второстепенными в этих элементах для рассматриваемой полосы частот и амплитуд воздействий, обычно пренебрегают. Реальную электрическую цепь, представленную в виде совокупности идеализированных схемных элементов, в дальнейшем будем называть схемой замещения электрической цепи или, короче, схемой электрической цепи.   Если можно считать, что напряжение и ток на всех элементах реальной цепи не зависят от пространственных координат, то такую цепь называют цепью с сосредоточенными параметрами, если зависят — цепью с распределенными параметрами. Процессы в цепи с сосредоточенными параметрами описывают алгебраическими или обыкновенными дифференциальными уравнениями; процессы в цепях с распределенными параметрами описывают уравнениями в частных производных. Дальнейшее подразделение типов цепей будет дано по ходу изложения. Соответствие расчетной модели реальной электрической цепи проверяют путем сопоставления расчета с экспериментом. Если расчетные данные недостаточно сходятся с экспериментом, модель уточняют.

7. Основными топологическими понятиями теории электрических цепей являются ветвь, узел, контур, двухполюсник, четырехполюсник, граф схемы электрических цепей, дерево и связь графо схемы. Рассмотрим некоторые из них. Ветвью называют участок электрической цепи с одним и тем же током. Она может состоять из одного или нескольких последовательно включенных элементов. Узлом называют место соединения трех и более ветвей. Узел обозначается на схеме точкой. Узлы, имеющие равные потенциалы, объединяются в один потенциальный узел. Контуром называют замкнутый путь, проходящий через несколько ветвей и узлов электрической цепи. Независимым называется контур, в состав которого входит хотя бы одна ветвь, не принадлежащая соседним контурам. Двухполюсником называют часть электрической цепи с двумя выделенными зажимами – полюсами. Двухполюсник обозначают прямоугольником с индексами А или П. А – активный двухполюсник, в составе которого есть источники ЭДС. П – пассивный двухполюсник.

8. Закон Ома для участка цепи без ЭДС устанавливает связь между током и напряжением на этом участке:

Или

  Закон Ома для участка цепи, содержащего ЭДС позволяет найти ток этого участка

здесь а, б – крайние точки участка; Е – значение ЭДС. Знак «плюс» ставится при совпадении тока, протекающего по участку, с направлением ЭДС.

9. Сила тока прямо пропорциональна разности потенциалов (напряжению) на концах участка цепи и обратно пропорциональна сопротивлению этого участка:

I = U/R  - Закон Ома для замкнутой цепи,

Где I - Сила тока в цепи. Измеряется в Амперах

U – напряжение на данном участке цепи

R – сопротивление данного участка цепи

Закон ома для замкнутой цепи говорит о том что: величина тока в замкнутой цепи, которая состоит из источника тока обладающего внутренним сопротивлением, а также внешним нагрузочным сопротивлением, будет равна отношению электродвижущей силы источника к сумме внешнего и внутреннего сопротивлений.

E Электродвижущая сила источника тока измеряется в Вольтах

где R Сопротивление внешней цепи измеряется в Омах

r внутреннее сопротивление источника тока также измеряется в Омах.

10. Первый закон Кирхгофа имеет две формулировки. 1) Сумма токов протекающих через любой узел равна нулю. 2) Сумма токов втекающих в узел равна сумме токов вытекающих из него.