Вопрос 35
Как влияют вредные вещества на организм человека? Что такое ПДК вредного вещества? Приведите ПДК двух-трех вредных веществ. Поясните сущность методов контроля запыленности и загазованности на рабочих местах. Какие приборы используют для контроля запыленности и загазованности?
Ответ
Вредным называется вещество, которое при контакте с организмом человека может вызывать травмы, заболевания или отклонения в состоянии здоровья, обнаруживаемые современными методами как в процессе контакта с ним, так и в отдаленные сроки жизни настоящего и последующих поколений.
По токсическому (вредному) эффекту воздействия на организм человека химические вещества разделяют на общетоксические, раздражающие, сенсибилизирующие, канцерогенные, мутагенные, влияющие на репродуктивную функцию.
Химические вещества (органические, неорганические, элементорганические) в зависимости от их практического использования классифицируются на:
- промышленные яды, используемые в производстве: например, органические растворители (дихлорэтан), топливо (пропан, бутан), красители (анилин);
- ядохимикаты, используемые в сельском хозяйстве: пестициды (гексахлоран), инсектициды (карбофос) и др.;
- лекарственные средства;
- бытовые химикаты, используемые в виде пищевых добавок (уксусная кислота), средства санитарии, личной гигиены, косметики и т. д.;
- биологические растительные и животные яды, которые содержатся в растениях и грибах (аконит, цикута), у животных и насекомых (змей, пчел, скорпионов);
- отравляющие вещества (ОВ): зарин, иприт, фосген и др.
К ядовитым принято относить лишь те вещества, которые свое вредное действие
проявляют в обычных условиях и в относительно небольших количествах.
К промышленным ядам относится большая группа химических веществ и соединений, которые в виде сырья, промежуточных или готовых продуктов встречаются в производстве.
В организм промышленные химические вещества могут проникать через органы дыхания, желудочно-кишечный тракт и незащищенную кожу. Однако основным путем поступления являются легкие.
Бытовые отравления чаще всего возникают при попадании яда в желудочно-кишечный тракт (ядохимикатов, бытовых химикатов, лекарственных веществ). Возможны острые отравления и заболевания при попадании яда непосредственно в кровь, например, при укусах змеями, насекомыми, при инъекциях лекарственных веществ.
Токсическое действие вредных веществ характеризуется показателями токсикометрии, в соответствии с которыми вещества классифицируют на чрезвычайно токсичные, высокотоксичные, умеренно токсичные и малотоксичные. Эффект токсического действия различных веществ зависит от количества, попавшего в организм вещества, его физических свойств, длительности поступления, химизма взаимодействия с биологическими средами (кровью, ферментами). Кроме того, эффект зависит от пола, возраста, индивидуальной чувствительности, путей поступления и выведения, распределения в организме, а также метеорологических условий и других сопутствующих факторов окружающей среды.
Общая токсилогическая классификация вредных веществ приведена в табл. 1.
Яды наряду с общей обладают избирательной токсичностью, т. е. они представляют наибольшую опасность для определенного органа или системы организма. По избирательной токсичности выделяют яды:
- сердечные с преимущественным кардиотоксическим действием; к этой группе относят многие лекарственные препараты, растительные яды, соли металлов (бария, калия, кобальта, кадмия);
- нервные, вызывающие нарушение преимущественно психической активности (угарный газ, фосфорорганические соединения, алкоголь и его суррогаты, наркотики, снотворные лекарственные препараты и др.);
- печеночные, среди которых особо следует выделить хлорированные углеводороды, ядовитые грибы, фенолы и альдегиды;
- почечные - соединения тяжелых металлов этиленгликоль, щавелевая кислота;
- кровяные - анилин и его производные, нитриты, мышьяковистый водород;
- легочные - оксиды азота, озон, фосген и др.
Показатели токсиметрии и критерии токсичности вредных веществ – это количественные показатели токсичности и опасности вредных веществ. Токсический эффект при действии различных доз и концентраций ядов может проявиться функциональными и структурными (патоморфологическими) изменениями или гибелью организма. В первом случае токсичность принято выражать в виде действующих, пороговых и недействующих доз и концентраций, во втором - в виде смертельных концентраций.
Таблица 1
Общая токсилогическая классификация вредных веществ
Общее токсическое воздействие |
Токсические вещества |
Нервно-паралитическое действие (бронхоспазм, удушье, судороги и параличи) |
Фосфорорганические инсектициды (хлорофос, карбофос, никотин, ОВ и др.) |
Кожно- резорбтивное действие (местные воспалительные и некротические изменения в сочетании с общетоксическими резорбтивными явлениями) |
Дихлорэтан, гексахлоран, уксусная эссенция, мышьяк и его соединения, ртуть (сулема) |
Общетоксическое действие (гипоксические судороги, кома, отёк мозга, параличи) |
Синильная кислота и её производные, угарный газ, алкоголь и его суррогаты, ОВ |
Удушающее действие (токсический отёк мозга) |
Оксиды азота, ОВ |
Слезоточивое и раздражающее действие (раздражение наружных слизистых оболочек) |
Пары крепких кислот и щелочей, хлорпикрин, ОВ |
Психотическое действие |
Наркотики, атропин |
Порог вредного действия (однократного или хронического) - это минимальная (пороговая) концентрация (доза) вещества, при воздействии которой в организме возникают изменения биологических показателей на организменном уровне, выходящие за пределы приспособительных реакций, или скрытая (временно компенсированная) патология.
Отравления протекают в острой, под острой и хронической формах.
Острые отравления чаще бывают групповыми и происходят в результате аварий, поломок оборудования и грубых нарушений требований безопасности труда; они характеризуются кратковременностью действия токсичных веществ не более, чем в течение одной смены; поступлением в организм вредного вещества в относительно больших количествах - при высоких концентрациях в воздухе; ошибочном приеме внутрь; сильном загрязнении кожных покровов.
Хронические отравления возникают постепенно, при длительном поступлении яда в организм в относительно небольших количествах. Отравления развиваются вследствие, накопления массы вредного вещества в организме (материальной кумуляции) или вызываемых ими нарушений в организме (функциональная кумуляция).
Сенсибилизация - состояние организма, при котором повторное воздействие вещества вызывает больший эффект, чем предыдущее. Эффект сенсибилизации связан с образованием в крови и других внутренних средах измененных и ставших чужеродными для организма белковых молекул, индуцирующих формирование антител.
Для ограничения неблагоприятного воздействия вредных веществ применяют гигиеническое нормирование их содержания в различных средах.
Под предельно допустимой концентрацией веществ в воздухе рабочей зоны понимаются концентрации, которые при ежедневной работе в течение 8 часов, но не более 40 часов в неделю, в течение всего рабочего стажа не могут вызвать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований, в процессе работы или отдаленные сроки жизни настоящего и последующих поколений (ГОСТ 12.1.005-88).
Содержание вредных веществ в воздухе рабочей зоны не должно превышать установленных ПДК. В таблице 2. приведены ПДК некоторых веществ (ГОСТ 12.1.005.88 и ГН 2.1.5.686 . 98).
Таблица 2
Предельно допустимые концентрации вредных веществ в воздухе рабочей зоны (извлечение)
Примечание : п – пар; а - аэрозоли; п +а – смесь паров и аэрозолей; О – остронаправленное действие; А – аллергическое действие; Ф – фиброгенное действие; ПДК 0,01/0,05 – максимальная разовая ПДК (числитель), среднемесячная ПДК (знаменатель).
Для контроля концентрации вредных веществ в воздухе рабочей зоны (рабочих мест) используют экспресс-методы; лабораторные методы; методы непрерывного контроля.
Экспресс-метод нашел наиболее широкое применение и позволяет быстро и с достаточной точностью определять концентрацию вредных веществ, непосредственно, на рабочем месте. Суть его заключается в протягивании определенного объема воздуха через контрольные трубки с индикаторным порошком, который реагирует изменением цвета на содержание вредных веществ в воздухе. К приборам экспресс-метода относятся газоанализаторы: УГ-2; ГХ-100; ГХ-4 и др. (рис. 1, 2).
Рис. 1. Химический газоанализатор АМ-5( ГХ-100):
а – разрез по воздухозаборной части; б – общий вид;
1 – дистанционные цепочки, ограничивающие ход меха; 2 – пружины, удерживающие мех; 3 – резиновый мех; 4– выпускной клапан; 5 – проушина для отламывания концов индикаторной трубки; 6– мундштук с резиновой шайбой, являющейся гнездом для вставки индикаторной трубки.
Лабораторный метод является более точным, но требует отбора проб воздуха в рабочей зоне с последующим анализом его состава в лабораторных условиях в течение ближайшего времени. К таким методам относятся: хроматорафический, фотокалорометрический и др.
Метод непрерывного автоматического контроля применяется на рабочих местах с постоянным воздействием вредных веществ, которые могут вызвать серьезные нарушения в состоянии здоровья людей или привести к авариям за счет возникновения взрывоопасности и пожароопасности. Контроль проводится автоматизированными системами с записью изменений вредностей в воздухе во времени с применением газоанализаторов: Сирена-2 для аммиака, Фотон для сероводорода, ФКГ-3М для хлора и др.
Рис.2. Универсальный газоанализатор УГ-2
а – общий вид; б – схема;
1 –сильфон; 2 – корпус; 3 – шток; 4 – воздухозаборная трубка; 5 – пружина.
Контроль запыленности воздуха в рабочей зоне производится следующими методами: весовой, счетный, фотоэлектрический, ультразвуковой и т.д. В нашей стране наиболее широко применяется весовой аспирационный метод контроля. Суть его заключатся в протягивании определенного объема загрязненного воздуха за определенное время через специальный фильтр. Зная вес фильтра до и после протягивания воздуха и объем протянутого воздуха, вычисляется загрязненность воздуха (рис.3.).
Массовая концентрация пыли, мг/м3
Q = m2-m1/V0, (2)
где: m1 и m2
– масса фильтра до и после отбора пробы
пыли, мг; V0 – объем
воздуха, протянутого
через
фильтры в 1 мин, приведенный к нормальным
условиям, л; - время
отбора пыли, мин.
Счетный электрический метод служит для определения числа пылинок, находящихся в 1см3 воздуха. Подсчет производится с помощью микроскопа:
X = N/V = Kcр/ h (3)
где: Х – искомое число пылинок в 1см3 исследуемого воздуха; N – общее количество пылинок в воздухе; V – вместимость емкости, см3; K – количество клеток в 1см3 окуляра микроскопа; ср - среднее число пылинок, подсчитываемых в пяти различных полях зрения окуляра микроскопа; h – высота емкости, равна 3 см.
Фотоэлектрический метод основан на изменении светового потока, проходящего через слой исследуемого воздуха, падающего на фотоэлемент. Изменение в фотоэлементе тока, возбуждаемого световым потоком, фиксируется гальванометром, отградуированном в мг пыли, отнесенных к 1л воздуха.
Рис. 3. Аспиратор для отбора проб воздуха.
При определении концентрации вредных веществ в воздухе результаты должны приводится к нормальным условиям: температура 200С, атмосферное давление 760 мм ртутного столба, относительная влажность 50%.
Для анализа проб воздуха строителям при ведении работ в колодцах, емкостях, отделочных работах очень удобен газоанализатор ГХ-100. Этот компактный прибор прост в конструктивном решении, в применении не требует особых условий его хранения. В приложении 10, СНиП 111-4-80* приведен перечень приборов для определения содержания газов в воздухе строительного производства.
